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Abstract

Standardized catch-per-unit-of-effort (CPUE) of blue shark Prionace glauca
from the Hawai’i based longline fleet was updated through 2023 using the pre-
vious generalized linear modeling (GLM) approach. Standardized CPUE has
declined for both the deep-set and shallow-set sectors of the fishery over the last
3 years. However, changes in the deep-set sector of the fishery, notably a switch
in leader material and bait type, as well as limitations in the standardization
approach used make it difficult to discern whether this decline is representative
of the underlying spawning stock.

1 Introduction

Blue shark Prionace glauca are a pelagic shark globally distributed in sub-
tropical and temperate waters (Nakano and Stevens, 2008). They are most often
associated with the epipelagic layer (e.g., <200m depth) and are frequently en-
countered as a part of commercial longline fishing operations (Campana, 2016).

There are two main commercial longline fishing sectors operating around the
main Hawaiian Islands, deep-set and shallow-set, both of which commonly en-
counter blue shark as a non-retained bycatch species. The deep-set fishery tar-
gets tropical tunas (e.g., bigeye tuna Thunnus obesus) via deep-setting (∼ 200m)
of the fishing gear during the day. The shallow-set fishery targets swordfish
Xiphias gladius via shallow-setting (∼ 60m) of fishing gear at night.

Both sectors have undergone changes to operations over the years. High inter-
actions with protected turtle species forced a two-year closure of the shallow-set
fishery (2003-2004) re-opening as transformed fishery with restrictions on hook
type, bait type, and setting behavior. The deep-set fishery preempted a 2023
wire leader ban put in place to reduce shark bycatch by voluntarily switching to
monofilament leaders beginning in 2021 (Figure 1). Also in 2021, the deep-set
sector switched predominantly from using saury to milkfish as bait (Figure 2),
likely due to economic conditions (e.g., increased cost of Pacific saury Cololabis
saira given declines in the stock status).

This document provides an update of blue shark standardized catch-per-unit-
of-effort (CPUE) using the previously used generalized linear modeling (GLM)
approach (Kohin et al., 2016; Walsh and Teo, 2013) and longline observer data
through 2023. However, the previously described changes to the fishery prevent
the analysis of a single uninterrupted time series of fisheries data for either
sector. For the deep-set sector, analysis was considered in two periods, 2002-
2020 & 2021-2023, while the shallow-set only analyzed the post-closure period
2005-2023.
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2 Methods

A strict update of blue shark standardized CPUE from both sectors in the
Hawai’i longline was calculated following the approach taken by Walsh et al.
(2013) as this was the approach used to standardize CPUE for blue shark in
the two previous stock assessments (ISC, 2022, 2017). This approach is briefly
described here, however readers seeking additional detail should reference the
previous reports (Kohin et al., 2016; Walsh and Teo, 2013).

Blue shark CPUE was standardized using a delta-lognormal GLM approach
where the standardized CPUE was calculated as the product (𝜋𝜇) of the two
sub-models, noting that 𝜇 was corrected for log-transformation bias:

𝑧 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋)
𝑙𝑜𝑔𝑖𝑡(𝜋) =𝛼1 + 𝛽1,𝑌 𝐸𝐴𝑅 + 𝛽1,𝑄𝑇 𝑅 + 𝛽1,𝑅𝐸𝐺𝐼𝑂𝑁 + 𝛽1,𝑆𝑆𝑇 +

𝛽1,𝐵𝐴𝐼𝑇 + 𝛽1,𝑌 𝐸𝐴𝑅∶𝑄𝑇 𝑅 + 𝛽1,𝑄𝑇 𝑅∶𝑅𝐸𝐺𝐼𝑂𝑁

𝑌 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇); 𝑌 > 0
𝑙𝑜𝑔(𝜇) =𝛼2 + 𝛽2,𝑌 𝐸𝐴𝑅 + 𝛽2,𝑄𝑇 𝑅 + 𝛽2,𝑅𝐸𝐺𝐼𝑂𝑁 + 𝛽2,𝑉 𝐸𝑆𝑆𝐸𝐿 𝐿𝐸𝑁𝐺𝑇 𝐻+

𝛽2,𝐵𝐴𝐼𝑇 + 𝛽2,𝑌 𝐸𝐴𝑅∶𝑄𝑇 𝑅 + 𝛽2,𝑄𝑇 𝑅∶𝑅𝐸𝐺𝐼𝑂𝑁
𝜇 =𝑒𝑥𝑝(𝑌 + 𝕍(𝑌 )/2)

The standardized index is calculated as the annual means of the standardized
CPUE predictions for each observation. The variance around the estimate of
standardized CPUE was calculated as the variance of the two sub-models, as-
suming independence.

𝕍(𝜋𝜇) = 𝕍(𝜋) ∗ 𝕍(𝜇) + 𝕍(𝜋) ∗ (𝜇)2 + 𝕍(𝜇) ∗ (𝜋)2

As noted in the Introduction, analysis was considered in two separate periods,
2002-2020 & 2021-2023, for the deep-set while the shallow-set only analyzed the
post-closure period 2005-2023.

3 Results

The updated standardized CPUE was consistent with the standardized CPUE
used in the previous assessment through the common period of analysis, 2020
(Figure 3). However, in more recent years since 2021 both sectors show a de-
clining trend. Model diagnostics for each component of the delta-GLM models
are shown in Figures 4 - 15.
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4 Discussion

In both sectors, the standardized CPUE appears to decline in the recent period
2021 - 2023. However, changes in the deep-set sector of the fishery, notably
a switch in leader material and bait type, as well as limitations in the stan-
dardization approach used make it difficult to discern whether this decline is
representative of the underlying spawning stock.
As it relates to the standardization approach used, the approach taken by Walsh
et al. (2013) does not apply best practices for standardizing CPUE data (Hoyle
et al., 2024), especially as it relates to dealing with spatiotemporal variability
in catch rates. While there is nothing inherently incorrect with using a delta-
GLM approach, it is inappropriate to construct an index as the annual means of
the standardized CPUE predictions made for each observation. This implicitly
weights the index in proportion to the fishing effort which may not result in an
index that is representative of the underlying stock dynamics. A more appropri-
ate approach using delta-GLMs would follow Campbell (2015) where the index
is constructed as a spatially weighted average of predicted standardized CPUE
from each spatiotemporal strata defined within a “Walter’s Table” (Walters,
2003). However, even in this case, the current analysis only defined 8 spatial
regions which may still be overly broad to properly capture spatial variation in
catch rates. Defining smaller spatial strata, or moving to an explicit spatiotem-
poral modelling approach (Thorson et al., 2015) is recommended. Furthermore,
explicitly modelling the spatiotemporal correlation structure can allow for more
appropriate interpolation of predicted spatial catch-rates in the event that the
fishing effort has shifted over time. Lastly, the approach taken by Walsh et al.
(2013) should seek to account for the effects of possible catchability changes
related to additional recorded covariates such as: vessel random effects, leader
type, number of hooks fished, and/or hooks between floats.
Future analysis of this data in support of the upcoming 2027 stock assessment of
blue shark should revisit the CPUE standardization in light of these concerns,
and build on the spatiotemporal analytic approach described in Ducharme-
Barth et al. (2024).
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Figures

Figure 1: Distribution of sets relative to observed leader type for both sectors
of the fishery over time. Sets missing a leader type are shown in dark blue.
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Figure 2: Distribution of sets relative to observed bait type for both sectors of
the fishery over time.
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Figure 3: Standardized catch-per-unit-of-effort (CPUE) of blue shark for both
sectors, deep-set and shallow-set, of the US Hawai’i based longline fishery.
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Figure 4: Diagnostics: encounter probability, shallow-set.
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Figure 5: Diagnostics: encounter probability, shallow-set.
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Figure 6: Diagnostics: encounter probability, deep-set 2002-2020
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Figure 7: Diagnostics: encounter probability, deep-set 2002-2020
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Figure 8: Diagnostics: encounter probability, deep-set 2021-2023
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Figure 9: Diagnostics: encounter probability, deep-set 2021-2023
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Figure 10: Diagnostics: positive catch, shallow-set.

16



Figure 11: Diagnostics: positive catch, shallow-set.
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Figure 12: Diagnostics: positive catch, deep-set 2002-2020
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Figure 13: Diagnostics: positive catch, deep-set 2002-2020
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Figure 14: Diagnostics: positive catch, deep-set 2021-2023
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Figure 15: Diagnostics: positive catch, deep-set 2021-2023
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