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Abstract 

This working paper updates the standardized CPUE of blue shark caught by Japanese 

offshore and distant-water shallow-set longline fishery in the western North Pacific up to 

2023. Since the catch data of sharks caught by commercial tuna longline fishery is usually 

underreported due to the discard of sharks, the author filtered the logbook data using similar 

filtering methods applied in 2021. The nominal CPUE of filtered shallow-set data was then 

standardized using the spatio-temporal generalized linear mixed model (GLMM) to provide 

the annual changes in the abundance of blue sharks in the northwestern Pacific. The author 

focused on seasonal and interannual variations of the density in the model to account for 

spatial and seasonal changes in the fishing location due to the target changes between blue 

shark and swordfish. The predicted annual changes in the CPUE of blue shark revealed a 

slight upward trend until 2005, followed by a downward trend after 2005, reaching its lowest 

level in 2008. After that, it showed an increasing trend again until 2015, but then started to 

decrease again, and it has been fluctuating in recent years. The abundance indices predicted 

from the spatio-temporal model, with a large amount of data collected in the most abundant 

waters in the western North Pacific, are very useful information about the abundance in this 

region. 

 

Introduction 

For the stock assessment in 2022, Japan provided a standardized CPUE of blue shark 

(Prionace glauca) caught by Japanese offshore and distant-water shallow-set longline fishery 

in the western North Pacific from 1994 to 2020 (Kai, 2021). The CPUE was chosen as one of 

the available indicators of stock abundance for the late period (i.e., 1994-2020) in the stock 

assessment due to its broad spatial-temporal coverage in the main distribution area (i.e., 

temperate waters), the statistical soundness of the standardization process, size and sex 

composition, and larger catch relative to other fisheries (ISC, 2022). The predicted annual 

changes in the CPUE of blue shark revealed an increasing trend in the 1990s, a stable trend 

from 1998 to 2005, a downward trend until 2008, and an upward trend thereafter, except for 

2020. 

  The Japanese shallow-set longline fleets changed their operational area by season 

without changing the gear configurations (e.g., hooks between floats and length of the branch 

line) even if they changed their target species from swordfish (Xiphias gladius) to blue shark, 

and vice versa. To account for the spatio-temporal changes in the operational area, the author 

used the VAST (Vector Autoregressive Spatio-Temporal) software package for R (Thorson, 
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2019). 

 The objective of this working paper is to update the standardized CPUE of blue shark 

caught by Japanese offshore and distant-water shallow-set longline fishery up to 2023 and to 

provide the annual relative abundance index for the indicator analysis of blue shark in 2025. 

The nominal CPUE is standardized using the spatio-temporal GLMM (VAST), taking into 

account seasonal and interannual changes in density.   

   

Materials and Methods 

The author used a similar statistical filtering method and spatio-temporal model as those used 

in the paper by Kai (2021).  

 

Data sources 

 Set-by-set logbook data from Japanese offshore and distant-water longline fisheries in 

the western North Pacific (20-45° N, 130° E -160° W) were used to estimate the standardized 

CPUE for 1994-2023. The set-by-set logbook data included information on catch number, 

amount of effort (number of hooks), number of branch lines between floats (hooks between 

floats: HBF) as a proxy for gear configuration, location (longitude and latitude) of set by 

resolution of 1 × 1 degree square, vessel identity (vessel name/call sign), fishery type 

(offshore/distant water), and the prefecture in Japan where the longline boats were registered. 

The offshore “Kinkai” fleet was defined by tonnage of vessels between 20 and 120 MT, while 

the distant-water “Enyo” fleet consisted of vessels larger than 120 MT. Japanese research and 

training vessel (“JRTV”) data for offshore and distant-water longline fishery were not 

included in this analysis because these fleets are not commercial fisheries. 

 

Data filtering 

 The logbook data was filtered to remove the set-by-set data including discard and 

under-reporting catch. First, the set-by-set data was selected by the number of hooks per 

basket (HPB; 3-5) to identify a shallow-set fishery, as the shallow-set fishery targets blue 

sharks or swordfish in the northwestern Pacific, while a deep-set fishery usually targets tunas 

(HPB; 6-21). Second, the set-by-set data was selected by a reporting rate of shark’s positive 

catch by vessel (RR; number of sets with shark recorded/total number of sets ≥ 0.946) 

because Clarke et al. (2011) mentioned that one of the potential reasons for high reporting 

rates (i.e., 0.946) for sharks in the northwestern Pacific could be a commercial interest in 

those catches due to the presence of Japan’s largest shark market at Kesen-numa, Miyagi 



3 
 

prefecture. Another reason is the relatively higher abundances in the region, leading to higher 

catch rates of sharks (ISC, 2017). Third, the set-by-set data was selected by the registered 

prefecture ("Tohoku and Hokkaido," including Hokkaido, Aomori, Iwate, Miyagi, Fukushima, 

and Toyama) of vessels because the fleets in these prefectures frequently target blue sharks, 

and the RR of the vessels registered in these prefectures is quite high. 

 

CPUE standardization with spatio-temporal model 

The spatio-temporal model consists of two components: encounter probability and 

positive catch in a delta model. The first predictor was fixed at a constant value due to the 

high positive catches (> 98.7%). The second predictor was modeled using a negative 

binomial (NB) model to account for the count data with over-dispersion (variance/mean = 

178.5): 

𝑐~ 𝑁𝑒𝑔𝐵𝑖𝑛 (𝑐∗, 𝑐∗(1 + 𝜎1) + 𝑐∗2𝜎2), 

log  (𝑑) = 𝑑0(𝑡) + 𝛾(𝑠) + 𝜔(𝑠, 𝑞) + 𝛿(𝑠, 𝑦) + 𝜃(𝑠, 𝑡),      (1)  

where c is observed catch,  NegBin (a, b) is a negative binomial distribution with mean a and 

variance b (Lindén and Mäntyniemi, 2011),  𝑐∗ is an expected catch and a function of density 

𝑑  and fishing effort 𝑓 (number of hooks = 1),  σ1 and σ2 are residual variations, 𝑑0(𝑡) 

represents temporal variation (the intercept for each year-season t), 𝛾( 𝑠) represents spatial 

variation (s), 𝜔(𝑠, 𝑞) represents spatio-temporal variation (station s and season q), 𝛿(𝑠, 𝑦) 

represents spatio-temporal variation (station s and year y), and 𝜃(𝑠, 𝑡)  represents spatio-

temporal variation (station s and year-season t). The intercept 𝑑0(𝑡)  is decomposed into 

season and year main effects and an autocorrelated interaction of season and year to specify 

the interpolation for season-year combinations without any data, using information from 

adjacent season-years, other years of the same season, or other seasons of the same year (see 

Thorson et al., 2020).  

 The VAST (v13_0_0) was used to standardize the nominal CPUE. Annual abundance 

index I was estimated as: 

 𝐼(𝑡) = ∑ 𝑓(𝑠)𝑛𝑠
𝑠=1 × 𝑐∗(𝑠, 𝑡)/{∑ ∑ 𝑓(𝑠)𝑛𝑠

𝑠=1 × 𝑐∗(𝑠, 𝑡)}
𝑛𝑡
𝑡=1 ,   (2) 

where ns is total number of knots and 𝑓 is fishing effort (number of hooks) at location s. The 

number of knots (ns = 250) was specified to balance computational speed and spatial 

resolution. 

 

Model selection and diagnostics 
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 In the previous analysis in 2021, to select the best model, the explanatory variables 

were sequentially removed from the full model in Eq (1). The best model was then selected 

using the AIC (Akaike, 1973). Since the predicted CPUE index is used for the indicator 

analysis of blue shark in 2025, the same model structure selected in 2021 was used. For the 

model, the goodness of fit was examined using Pearson residuals and a QQ-plot. The 

residuals were computed using a randomized quantile (Dunn and Smyth, 1996) to produce 

continuous normal residuals. 

 

Results 

 Data filtering reduced the number of datasets collected in the North Pacific from 

1,921,027 to 106,516. 

 

Selection of the best model and annual trends in CPUE 

The model, which uses the same structure selected in 2021, showed reasonable 

convergence with a positive definite Hessian matrix and a small maximum gradient (< 

0.001). The model incorporates spatial (station) and spatio-temporal variances (station and 

year; station and season; and station and year-season) as random effects. A list of all 

parameters and estimates of the model is provided in Table 1. The predicted annual changes 

in the CPUE of blue shark revealed a slight upward trend until 2005, followed by a 

downward trend after 2005, reaching its lowest level in 2008. After that, it showed an 

increasing trend again until 2015, but then started to decrease again, and it has been 

fluctuating in recent years. The 95% confidence intervals in the CPUE estimates were 

substantially larger after 2015 because the fishing efforts (number of hooks) were smaller 

than those of any other years. The seasonal changes in the predicted CPUE of blue shark 

indicated the highest CPUE in Q2, followed by Q3, Q4, and Q1. The spatial maps of 

predicted CPUE showed that the hotspots appeared in the temperate water (30-40 ˚N and 

150-180 ˚E) in summer (April-June) and autumn (July-September) throughout the years. 

These results suggest that many blue sharks are dominant in this area from summer to 

autumn, as fishermen operate in this area targeting blue sharks during this period.  

 

Model diagnostics 

Diagnostic plots of goodness-of-fit for the best model didn’t show a serious deviation 

from normality or model misspecification (Fig. 3). These results suggested that the fitting of 

the best model to the data was good.   
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Discussions 

This document paper updates the annual abundance indices of blue shark caught by 

Japanese shallow-set longline fishery in the western North Pacific Ocean up to 2023, using a 

spatio-temporal GLMM, taking into account seasonal and interannual variations in density. 

The main advantage of the spatio-temporal model is an imputation for the missing data using 

spatial and temporal correlations through random effects (Thorson, 2019). Unlike the design 

based GLM used in the past assessment, the spatio-temporal GLMM developed by Thorson 

et al. (2020) enabled us to include interaction terms between spatial and temporal effects 

(season, year and season-year effects) with high spatial resolutions. The consideration of 

spatial variation with higher resolution had a large impact on the seasonal trends in the 

predicted CPUE (i.e., the CPUE in Q2 was the highest in Fig 2). The remarkable changes in 

the predicted CPUE by season and adding of interaction terms between year-season and 

stations resulted in the substantial changes in the predicted trends of annual CPUE (Fig. 1; 

Kai, 2021). These results suggested that abundance indices of blue shark significantly 

increased in 1990s due to the reduction of high fishing pressure of a drift net fishery prior to 

1993 (Fujinami et al., 2021a and b). Thereafter the abundance indices remained at higher 

levels until 2005 and sharply decreased and reached a historical lowest level in 2008 as the 

increase of fishing pressure from the longline fishery in 2000s. After 2008, the abundance 

indices gradually increased as the decrease of the fishing effort from the longline fishery. The 

abundance indices in recent years have been fluctuating. Therefore, the results of this study 

indicate that there are no signs of a significant decline in the blue shark population in this 

region in recent years. The abundance indices predicted from the spatio-temporal model, with 

a large amount of data collected in the most abundant waters in the western North Pacific, are 

very useful information about the abundance in this region.  
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Tables 

Table 1. List of all parameters and estimates of the selected model.  

 

 

  

No Parameter name Symbol Type Estimates

1 Distance of correlation  (Spatial random effect) κ Fixed 0.0049

2 Northings anisotropy h 1 Fixed 1.64

3 Anisotropic correlation h 2 Fixed 0.98

4 Parameter governing pointwise variance (Spatial random effect) η ɤ Fixed 0.57

5 Parameter governing pointwise variance (Spatio-temporal (season) random effect) η ω Fixed 0.44

6 Parameter governing pointwise variance (Spatio-temporal (year) random effect) η δ Fixed No estimation

7 Parameter governing pointwise variance (Spatio-temporal (year-season) random effect) η θ Fixed 1.26

8 Parameter governing autocorrelation (Spatio-temporal: year-season random effect) ρ θ Fixed 1.34

9 Residual variation 1 of negative binomial model σ 1 Fixed 0.37

10 Residual variation 2 of negative binomial model σ 2 Fixed 0.44

11 Intercept for first predictor β 1 Fixed 4.68

12 Intercept for second predictor β 2 Fixed -4.43

13 Spatial residuals γ Random Not shown

14 Spatio-temporal (season) residuals ω Random Not shown

15 Spatio-temporal (year) residuals δ Random No estimation

16 Spatio-temporal (year-season) residuals θ Random Not shown
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Table 2. Summary of annual CPUE predicted by spatio-temporal model along with 

corresponding estimates of the coefficient of variation (CV), annual nominal CPUE, and 

number of hooks in millions. Values are predicted using the best fitting model and scaled 

by average CPUE.  

 

  

Year
Predicted

CPUE

Predicted

CPUE in

2021

Nominal

CPUE
CV

Number

of hooks

(millions)

1994 0.81 0.84 0.41 0.15 19.4

1995 0.98 0.90 0.45 0.17 18.2

1996 0.86 0.85 0.52 0.15 17.5

1997 1.14 1.04 0.74 0.15 16.5

1998 1.11 1.03 0.72 0.14 17.1

1999 1.14 1.09 0.88 0.14 17.4

2000 1.10 1.06 0.99 0.13 20.1

2001 1.32 1.22 1.14 0.11 20.1

2002 0.99 1.03 1.10 0.12 17.7

2003 1.14 1.08 1.28 0.10 15.9

2004 1.05 1.03 1.17 0.10 15.5

2005 1.27 1.26 1.46 0.11 13.6

2006 1.01 1.06 1.32 0.10 13.2

2007 0.83 0.84 0.95 0.10 15.6

2008 0.62 0.73 0.93 0.11 13.5

2009 0.93 0.97 1.15 0.11 12.2

2010 0.91 1.04 1.06 0.12 11.3

2011 0.78 0.86 0.74 0.14 6.2

2012 0.75 0.88 0.99 0.14 7.5

2013 0.81 0.92 0.71 0.16 8.0

2014 1.10 1.04 0.79 0.17 7.9

2015 1.36 1.17 1.07 0.18 6.7

2016 1.14 1.14 1.18 0.18 7.2

2017 1.02 1.06 1.36 0.17 6.9

2018 0.94 1.04 1.19 0.19 7.1

2019 1.16 1.01 1.00 0.19 6.8

2020 0.68 0.81 0.71 0.18 7.1

2021 1.01 1.11 0.16 5.0

2022 1.15 1.52 0.19 3.8

2023 0.86 1.35 0.18 5.1
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Figures 

 

 

Fig. 1 Annual predicted CPUE relative to its average. Gray solid line denotes nominal CPUE 

relative to its average, shadow denotes 95% confidence intervals, and horizontal dotted line 

denotes mean of relative values (1.0).  

 



10 
 

 

Fig. 2 Seasonal predicted CPUE relative to its average. Gray solid line denotes nominal 

CPUE relative to its average, shadow denotes 95% confidence intervals, and horizontal 

dotted line denotes mean of relative values (1.0).  
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Fig. 3 Diagnostic plots of goodness-of-fit for the most parsimonious model. (a) Standardized 

residuals versus the fitted values can assess whether model misspecification is occurring; 

(b) the observed versus the predicted values can assess qualitatively whether the 

explanatory variables are indeed able to reduce variance in the data; (c) the square root of 

the absolute values of the standardized residuals versus the fitted values can assess 

whether variance changes as a function of the predicted value; and (d) quantile-quantile 

(QQ) plots can assess normality. 
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Fig. 4 Year- and season- specific spatial distribution of log-scaled predicted CPUE for blue 

shark from 1994 to 2002. The number of knots is  250.  
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Fig. 5 Year- and season- specific spatial distribution of log-scaled predicted CPUE for blue 

shark from 2003 to 2011. The number of knots is  250. 
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Fig. 6 Year- and season- specific spatial distribution of log-scaled predicted CPUE for blue 

shark from 2013 to 2023. The number of knots is 250. 

 

 

 


