
ISC/24/SHARKWG-1/11 
 
 
 
 
 

Update on standardized catch rates for mako shark (Isurus 
oxyrinchus) in the 2006-2022 Mexican Pacific longline 

fishery based upon a shark scientific observer program1
 

 

 
 

José Ignacio Fernández 
Méndez2, 

Luis Vicente González-Ania2, 

Georgina Ramírez Soberón2,, 

José Leonardo Castillo-Géniz3, 

Horacio Haro-Ávalos3, 

 
2Instituto Nacional de Pesca 
(National Fisheries Institute) 

1

Oficinas Centrales 
Av. México 190, Col. Del Carmen, 
Coyoacán, C.P. 04100, Ciudad de 

México, México  
e-mail: luis.gania@inapesca.gob.mx 

e-mail: ignacio.fernandez@inapesca.gob.mx 
e-mail: georgina.ramirez@inapesca.gob.mx 
3Centro Regional de Investigación Acuícola y 

Pesquera de Ensenada, Baja California 
Carr. Tijuana-Ensenada, km 97.5, El Sauzal de Rodríguez 

C.P. 22760, Ensenada, Baja California, México 
e-mail: leonardo.castillo@inapesca.gob.mx 

e-mail: horacio.haro@inapesca.gob.mx 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 Working document submitted to the ISC Shark Working Group Workshop, 29-30 November- 
1-2, 4-7 December 2023, Yokohama, Kanagawa, Japan. Document not to be cited without 
author’s permission.



2  
 

SUMMARY 
 
Abundance indices for shortfin mako shark (Isurus oxyrinchus) in the northwest Mexican 
Pacific for the period 2006-2022 were estimated using data obtained through a pelagic 
longline observer program, updating similar analyses made in 2014 and 2021. Individual 
longline set catch per unit effort data, collected by scientific observers, were analyzed to 
assess effects of environmental factors such as sea surface temperature, distance from land 
coast, including islands and time-area factors, year, area fished, quarter and fraction of night 
hours in the fishing set. Standardized catch rates were estimated by applying hurdle (delta) 
models. The first part of the model estimates the probability of a positive observation using a 
binomial likelihood, and a logit link function. The second part of the model (the “count” or 
“positive” model) estimates the mean response for those non-zero observations, assuming a 
negative binomial distribution with a log link function. The importance of factors included in 
the models  is discussed. The results of this analysis point at the abundance index trends being 
close to stability in most of the analyzed period, with a low value in the last year of the series. 
 
INTRODUCTION 

 
The presence of more than 111 species of sharks in Mexican waters has allowed the 
development of commercial fisheries in both coastal and oceanic waters (Del Moral–Flores 
et al. 2016; Ehemann, et al. 2018). The main Mexican shark fisheries are the coastal artisanal 
fishery (along both Pacific and Gulf of Mexico coastlines) and the pelagic longline fisheries 
using medium size vessels in the northern Pacific region (Castillo-Géniz et al. 2008). 

 
The average annual Mexican national shark production (including small sharks, called 
“cazones”) from 2011 to 2021 (most recent official data) was 34,590 t, which places Mexico 
as one of the top f i ve  shark producer nations in the world ( F A O  F i s h S t at  u p d a t e  
d a t a  t o  2 0 2 0 ,  c i t e d  b y  C O N A P E S C A ,  2 0 2 1 ) . In 2018 the total domestic shark 
reached a historic peak of 47,873 t (2.2% of the total national fisheries production), with a 
market value of 948 million pesos (aprox. 53 k USD). The average annual shark production 
in Mexican Pacific for 2011-2021 was 20,053 t. In 2021 the Pacific shark production reached 
29,625 t which comprised 79.7% of the total Mexican shark production. 

 
Pelagic shark fisheries in the Mexican Northwest Pacific began in the mid 80's with the 
creation of an industrial fishing fleet. That was the result of the successful driftnet fishery 
in California, USA, which began in 1978, targeting common thresher shark (Alopias vulpinus) 
and shortfin mako (Isurus oxyrinchus, locally known as bonito shark). 

 
In 1986 a small fleet of driftnet vessels appeared in northern Baja California, Mexico. This 
fishery was stimulated both by the reduction in longline permits and by the local abundance 
of swordfish and other marketable by-catch products, including several species of large 
pelagic sharks. These vessels were fiberglass or steel built, with an overall length of 18-25 
m and a fish hold capacity of 50-70 t. 

 
The number of vessels had grown to 20 by 1990, and to 31 by 1993 (Holts and Sosa-Nishizaki 
1998). These vessels operated out of Ensenada, Baja California, and were similar in design 
and size (18-25 m) to the U.S. driftnet vessels, operating just 100 km to the north. This 
fleet targeted sharks, swordfish, tuna, and other pelagic fish. Sosa-Nishizaki et al. (1993), 
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Holts et al. (1998), Ulloa-Ramirez et al. (2000), and Sosa-Nishizaki et al. (2002) described in 
detail the growth of swordfish and shark fishery along the west coast of Baja California (BC). 

 
During the first 20 years, this fleet used surface gillnets as its primary fishing gear. The 
Mexican Official Standard NOM-029-PESC-2006 (DOF 2007) banned driftnets in medium- 
size vessels (10-27 m length). By the end of 2009, all vessels switched to longlines and the 
operational dynamics of the fleet changed drastically. With longlines the main shark species 
caught were blue (Prionace glauca) and short-fin mako (Isurus oxyrinchus) sharks (Godinez-
Padilla et al. 2016). 

 
In the last decade, the Mexican shark fisheries conducted by medium size commercial 
longliners from Ensenada, Baja California and particularly from Mazatlán, Sinaloa had 
expanded their fishery operations towards more oceanic waters in the Mexican Pacific 
Economic Exclusive Zone (EEZ). 

 
Management of Mexican shark fisheries 

 
Shark fisheries in Mexican waters are managed mainly through three instruments: 

 
1)   The Mexican Official Standard NOM-029-PESC-2006. Shark and Ray Responsible 

Fisheries. Specifications for their Exploitation; 
2)    The National Fisheries Chart (Carta Nacional Pesquera, CNP) and 
3)    The Shark and Ray Fishery Closure Agreements for both coastlines (vedas). 

 
The NOM-029 (DOF 2007) established several regulations for shark and ray fisheries in order 
to achieve sustainability, among them the establishment of specific fishing zones according   
to vessel characteristics, refuge zones, specifications for fishing gears, mandatory  
participation in the satellite vessel tracking program (Vessel Monitoring System, VMS), the 
banning of gillnets on medium size boats and the implementation of a scientific observer 
program. 

 
The National Fisheries Chart includes the description and the current exploitation status of 
shark populations as well as their availability in Mexican waters. At present, all shark 
fisheries are considered to be fully exploited (DOF 2010). 

 
Finally, in 2012 the fisheries authority established closed seasons for shark and ray fisheries 
in the Pacific and only for sharks in the Gulf of Mexico, with the aim of protecting the main 
reproductive season for most species (DOF 2012 and 2014). Those closed periods include 
shark by-catch in other fisheries. The closed season in the Mexican Pacific was established 
between May 1st and July 31st.
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Mexican shark fishery scientific observer program 
 
The shark scientific observer program (POT, acronym in Spanish) was established in August 
2006 by the Fisheries and Aquaculture Commission (CONAPESCA), in offshore and pelagic 
waters of the Mexican Pacific, as established in the Shark and Ray Responsible Fisheries 
Mexican Official Standard NOM-029-PESC-2006. The POT was designed by Mexico’s 
National Fisheries Institute (INAPESCA) and implemented by the National Research Trust for 
the National Program for Tuna Utilization and Dolphin Protection and Other Programs 
Related to Protected Aquatic Species (FIDEMAR). The shark scientific observers, trained by 
INAPESCA shark biologists and technicians, report numerical catches by species and 
operational details (e.g. time, geographical position, number of sets per trip, number of 
hooks per set, setting times, target species, bait type), catch and by-catch composition 
and catch trends of species caught by shark vessels. They also collect biometric (size and 
sex) and biological data (maturity stage) for shark target species. INAPESCA is responsible 
for analyzing data generated by the POT. 

 
The fishing boats participation in the observer program is voluntary so fishing trips with 
observer onboard are conducted according to the availability and willingness of fishing 
companies. The sampling coverage of fishing trips by the POT has been very variable, with a 
maximum of 20% in 2007 and a minimum of 1% in 2012 (Castillo-Géniz et al. 2014). 

 
Evolution of the catch 

 
Swordfish landings from Mexican driftnet vessels were first reported in 1986. They 
increased steadily to 831 t in 1991, and averaged annually 535 t in 1988-93. The low catch 
in 1993 forced some fishing vessels to look for alternate resources, including coastal and 
pelagic sharks, in the Gulf of California. The number of vessels operating driftnetting for 
swordfish in the first half of 1994 fell to 16 (Holts and Sosa-Nishizaki 1998).The information 
recorded by the Federal Fisheries Delegation in Baja California for 1990-1999 indicated an 
average catch per boat of 15.3 t and an average catch per trip of 2.73 t for the whole 
driftnet and longline fleet. 

 
The shortfin mako shark, Isurus oxyrinchus, is a pelagic-coastal specie of great fishing 
importance due to its wide distribution in the northern Pacific region and the center of the 
Mexican coast where medium-sized and artisanal fleets capture it. The shortfin mako shark is 
probably the fastest shark and the most active fish among the so-called large pelagic sharks. 
 
From capture and effort information collected by scientific observers on vessels of the fishing 
fleet of Manzanillo, Colima, in the period 1986-2003, Vélez-Marín and Márquez-Farías (2009) 
described the spatio-temporal distribution of mako in that region. In particular The western 
coast of Baja California has been recognized as a Biological Activity Center (BAC) with strong 
upwelling activity where the mixture of masses of the California Current and the Costa Rica 
Current characterizes its oceanographic conditions (Luch-Belda et al, 2000). The high level of 
biomass produced in the area supports large fisheries of minor pelagic fish (clupeids). The 
presence of these sharks and other highly migratory predatory pelagic fish coincide with the 
presence of small pelagic fish that probably serve as their prey. The numerous presence of 
juvenile I. oxyrinchus individuals in the region suggests the presence of a breeding area. 
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Medellín-Ortiz (2008) used information from 23 shortfin mako sharks tagged with SPOT and 
PAT tags on the western coast of the Baja California Peninsula between 2004-2006. The data 
recorded by these satellite tags indicated that the sharks experienced depths between 0-500 
m, spending 60% of their time in surface waters. While some sharks remained within the 
California Basin throughout the year, a pattern of movement was observed northward during 
June-October and southward during November-May. 
 
From 2006 to 2022, the official capture records of the short-finned mako shark, from the 
different entities of the Mexican Pacific coast of the central and northwest area, show that 
the state with the highest average catches in these 17 years has been Baja California South, 
followed by Baja California and Sinaloa. Likewise, important fluctuations have been observed 
in total catches in which the years 2020, 2019, 2015 and 2014 have reached historical 
maximums with 1877, 1795, 1653 and 1467 t respectively. (Figure 1). 
 
Catch composition 

 
Based on the analysis of 683 fishing logbooks from the Ensenada longline fleet reported 
between 2011 and 2015, Godínez-Padilla et al. (2016) reported a specific catch 
composition of 18 shark species. The species with the highest numerical catch were: blue 
shark, P. glauca (89.25%); and the shortfin mako shark, I. oxyrinchus (7.77%). With a lower 
proportion the thresher shark, A. vulpinus (1.06%); silky shark, Carcharhinus falciformis 
(0.63%); smooth hammerhead shark, Sphyrna zygaena (0.56%); pelagic thresher, A. 
pelagicus (0.19%); the big-eye thresher, A. superciliosus (0.02%); and other species that 
represented 0.52% of the total numerical catch. 
Recently, Corro-Espinosa (unpublished data) conducted an analysis of the commercial 
logbooks from the Mazatlan longline fleet for years 2009-2012. Corro-Espinosa documented 
a total catch of 182,482 sharks from 11 species, caught in 8,447 longline sets. Blue shark (P. 
glauca) 64.6%, thresher (A. vulpinus) 9.4%, bigeye thresher (A. superciliosus) 9.3%, 
pelagic thresher (A. pelagicus) 7.7% and mako (I. oxyrinchus) 1.7% were the most frequently 
caught pelagic sharks. (Figure 2). 
 
 
Catch rate standardization 

 
The primary indices of abundance for many of the world’s valuable and vulnerable species are 
based on catch and effort. These indices, however, should be used with care because changes 
over space and time in catch rates can occur because of factors other than real changes in 
abundance (Gavaris 1980, Walters 2003, Maunder and Punt 2004, Haggarty and King 2006, 
Campbell 2015). Nominal catch rates obtained from fishery statistics or observer programs 
require standardization to correct for the effect of factors not related to regional fish 
abundance but assumed to affect fish availability and vulnerability, usually by using statistical 
regression methods (Bigelow et al. 1999, Ortiz and Arocha 2004). 
 
Generalized Linear Models (GLM, Nelder and Wedderburn 1972, McCullagh and Nelder 1989) 
are the most common method for standardizing catch and effort data and their use has 
become standard practice because this approach allows identification of the factors that 
influence catch rates and calculation of standardized abundance indices, through the 
estimation of the year effect (Goñi et al. 1999, Maunder and Punt 2004, Brodziak and Walsh 
2013). GLMs are defined mainly by the statistical distribution for the response variable (in this 
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case, catch rate) and the relationship of a linear combination of a set of explanatory variables 
with the expected value of the response variable. Its use is based upon the assumption that 
the relationship between a function of the expected value of the response variable and the 
explanatory variables is linear. A variety of error distributions of catch rate data have been 
assumed in GLM analyses (Lo et al. 1992, Bigelow et al. 1999, Goñi et al. 1999, Punt et al. 2000, 
Maunder and Punt 2004). 
 
Catches of non-target species are relatively unusual (resulting in many catch records being 
zero, even though effort is recorded to be non-zero) and catch and effort data are often 
characterized by left-skewed distributions, with a high proportion of zero catches, and few 
observations with high catch rates that resemble the distributions of highly aggregated 
species. The presence of a high proportion of zeros can invalidate the assumptions of the 
analysis and make inferences based on them dubious. The presence of zeros can also result in 
computational difficulties, as the logarithm of zero is undefined (Maunder and Punt 2004, 
Ortiz and Arocha 2004). 
 
Alternatives to deal with this kind of data can include using zero-inflated models (Minami et 
al. 2007, Zuur et al. 2009), models based on the Tweedie distribution (Tweedie 1984, Shono 
2008), or hurdle (or zero-altered, also called delta models) modeling separately the probability 
of obtaining a positive catch and the catch rate, given that the catch is non-zero, using a 
standard distribution defined for positive values (Pennington 1983, as proposed by Lo et al. 
1992, Harding and Hilbe 2012). The probability of obtaining a positive observation is usually 
modeled using the binomial distribution (Stefansson 1996, Maunder and Punt 2004), with 
logit or probit link when assuming approximately an equal number of zeros and ones (positive 
observations) or complementary log-log (c log-log) when there is a predominance of negative 
or positive observations (Myers et al. 2002, Zuur et al. 2009). A variety of distributions could 
be used to model the catch rate given that it is non-zero (Dick 2004). Most commonly selected 
distributions are the log-normal (Brown 1998, Porter et al. 2003), Gamma (Punt et al. 2000), 
poisson (Ortiz and Arocha 2004), negative binomial (Punt et al. 2000) and inverse gaussian 
(Walker et al. 2012). The final index of abundance is the product of the back transformed year 
effects from the two GLMs (Lo et al. 1992, Stefánsson 1996). 
 

MATERIAL AND METHODS 
 
This study is focused on the longline component of the shark fishery with medium size vessels 
in the northwest region of the Mexican Pacific. Driftnet operations were banned in 2009, while 
longline fishing has prevailed through the years of operation of the scientific observer 
program, so the longline time series June 2006-December 2022 is complete. In this first stage, 
data –belonging to fleets operating outside this area or scarcely sampled– were excluded from 
the analysis. Then, data were subjected to a preliminary analysis, looking for missing values, 
incomplete information and inconsistencies. In this way, just 7,822 validated sets were 
retained to be used in the analysis. The proportion of zero-catch sets in this subsample was 
63.9%, pointing to the use of a two-part, hurdle model for the analysis, with a logit link for the 
binomial GLM and a negative binomial (with a log link function) for the count model. 
 
After an initial exploratory analysis, factors which were considered as having a possible 
influence on the RESPONSE variable, catch rate (CTCHRATEms), were selected to be included 
in a “maximum model” for the analyses. 
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The factors selected for inclusion in the analysis were the following: Mean Sea Surface, 
Temperature (MEANTEMP as a three level factor, H, M and L for “high”, “medium” and “low”), 
calculated for each set as the average of temperature data measured in situ, at the beginning 
and the end of both gear setting and retrieval. MEANTEMP levels were defined as L<=21°C, 
21<M<=25, and H>25°C, on the basis of the mean sea surface temperature in all validated sets. 
 
Mean Sea Surface Temperature Anomaly (MEANSSTANOM) was defined as a three level factor, 
MEANSSTANOMML (<=-1), MEANSSTANOMMM (>-1,<+1), MEANSSTANOMMH (>=+1) for 
“low”, “medium” and “high” mean SST anomaly. Data on this factor were obtained from the 
Multi-scale Ultra-high Resolution (MUR) SST Analysis Anomaly fv04.1, Global, 0.01°, 2002-
present, Daily, Lon0360 data base, available in the ERDDAP data server  
(https://coastwatch.pfeg.noaa.gov/erddap/griddap/jplMURSST41anom1day_Lon0360.html) 
using the rerddapXtracto R package (Mendelssohn 2021). 
 
The proportion of night hours in the fishing set for sets being carried out mostly in daylight or 
at night (PNH, a two level factor, “DAY” < 0.5 and “NIGHT” >=0.5) was calculated using the 
data from each fishing set and calculating the time of dawn and sunset for the corresponding 
dates and coordinates, using the suncalc R package (Thieurmel and Achraf 2022). 
 
Fraction of the Moon Illuminated (MP, a three level factor, “NEW”<0.3, “PART”>=0.3 <=0.7, 
and “FULL” >0.7), were calculated for the dates of the fishing sets , using the suncalc R package 
(Thieurmel and Achraf 2019). 
 
Distance to the nearest coastline, including islands, (DIST as a two level factor, N for “near” 
for distances less than 200 km and F for “far” from the coast for distances above that number), 
was calculated using the raster R package (Hijmans 2019). 
 
Time-area factors such as YEAR, QUARTER and fishing area were included. Three fishing areas 
(LATF ) were defined, NORTH above the 25° parallel, CENTRAL between 21° and 25° of latitude 
and SOUTH below 21° (Figure 3). 
 
The levels of the above mentioned factors were selected matching approximately the inflexion 
points of a LOESS smoother on a scatterplot of catch rate against the values of the 
corresponding variable. The fishing areas were defined based on that LOESS – scatterplot 
procedure and on observed fleet operations patterns.  
 
As a noticeable trend for catching swordfish in detriment of shark catches has been detected 
in the last years, a variable was included in the analysis as a predictor (CTCHRATEposswo, with 
levels 1 and 0 for swordfish appearing or not in fishing sets, respectively). The change in fishing 
strategy (a shift from diurnal to nocturnal fishing sets) to increase swordfish catch has been 
different in the two main fleets involved in the fishery. A two-level predictor, FLEET, was 
included (with two levels, EN for Ensenada and MZ for Mazatlán, after their respective home 
ports). 
 
Both probability of catch and catch rates were modeled as a function of these factors and 
several two-way interactions, QUARTER:DIST, LATF:DIST, MEANTEMP:MEANSSTANOM, 
FLEET:PNH, FLEET:CTCHRATEposswo. 
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Catch probability and positive catch rates were modeled as a function of these factors, with a 
hurdle model, using  the pscl package (Jackman, 2020, Zeileis et al., 2008) in the R 
programming language and environment version 4.2.1 (R Core Team 2022). 
 
The first part of the model estimates the probability of a positive observation using a binomial 
likelihood, and a logit link function. The second part of the model (the “count” or “positive” 
model) estimates the mean response for those non-zero observations, assuming a negative 
binomial distribution. 
 
The formulas of the maximum (initial) models were: 
 
For the “counts” or “positive”, model: 
CTCHRATEms ~ YEAR+ QUARTER + LATF + DIST + MEANTEMP + MEANSSTANOM + PNH + FLEET 
+ CTCHRATEposswo + QUARTER:DIST + LATF:DIST + MEANTEMP:MEANSSTANOM + FLEET:PNH 
+ FLEET:CTCHRATEposswo 
 
For the binomial model: 
CTCHRATEposms ~ YEAR + QUARTER + LATF + DIST + MEANTEMP + MEANSSTANOM + PNH + 
FLEET + CTCHRATEposswo + QUARTER:DIST + LATF:DIST  + MEANTEMP:MEANSSTANOM + 
FLEET:PNH + FLEET:CTCHRATEposswo  
 
The significance of the included variables and interactions was assessed through tests of 
Hypothesis in one-term deletion tests using the likelihood-ratio tests (Agresti, 2019) in order 
to prevent the potential effects of collinearities, as described by Crawley (2013). The effect of 
the term was determined to be significant at least at the 0.05 level. The K-fold Cross Validation 
procedure (James et al. 2021) using the boot R package (Canty and Ripley 2020), the Akaike 
Information Criterion, and the Bayesian Information Criterion (Burnham and Anderson, 2002) 
were used as additional criteria of model simplification. 
 
The estimated marginal means and their standard errors for the YEAR factor (the standardized 
abundance indices) were obtained by using the emmeans routine contained in the emmeans 
R package (Lenth 2021). 
 
Although we are conscious that inter annual variations in spatial or temporal patterns could 
occur (v. gr. the species and/or effort distribution, seasonal changes in temperature or other 
factors among years), we preferred not including interactions involving the factor YEAR at this 
stage of the analysis with fixed effects models. Including interactions involving the factor YEAR, 
as well as treating it as a random factor by using Generalized Linear Mixed Effects Models 
(GLMM) as suggested by Maunder and Punt (2004) and Campbell (2015), could be considered 
at later stages of the analysis. 
 
 
RESULTS AND DISCUSSION 
 
Table 1 shows the results of the model simplification process. The final (“minimum adequate”) 
model was: 
 
For the “counts” or “positive”, model: 
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CTCHRATEms ~ YEAR + QUARTER + LATF + DIST + MEANTEMP + MEANSSTANOM + PNH + 
FLEET + CTCHRATEposswo + QUARTER:DIST + LATF:DIST + MEANTEMP:MEANSSTANOM + 
FLEET:PNH 
 
For the binomial model: 
CTCHRATEposms ~ YEAR + QUARTER + LATF + DIST + MEANTEMP + MEANSSTANOM + PNH + 
FLEET + QUARTER:DIST + LATF:DIST + MEANTEMP:MEANSSTANOM 
 
The results of estimated marginal means procedure, the standardized abundance indices for 
the mako shark (2006-2022) from the model are shown in Table 2. The re-scaled values of the 
estimated indices are shown in table 3. Figure 4 show the estimated values of the relative 
index and their 95% confidence intervals, together with the nominal catch rates for years 
2006-2022. 
 
It is possible that the largest confidence intervals in the abundance index (for example in the 
years 2006 and 2012), could be a result, at least in part, from inter-annual differences in 
sample sizes. 
 
Figure 5 shows the residuals of the model as well as the marginal-model plots for each factor. 
The residuals show an asymmetrical distribution with many positive residuals with relatively 
high values. The Hosmer-Lemeshow (Agresti 2019) test did not indicate a significant lack of fit 
(p-value >= 0.05) nor an overdispersion test showed any evidence of that kind of problem in 
the binomial part of the model. The Theta estimate of the counts part of the model (1.6037) 
didn’t appear to show signs that overdispersion remained after fitting the model. 
 
That pattern in the residuals led to repeating the process several times, including several 
subsets of the data, excluding particular areas or fleets and trying different weights vectors. 
The best results, in regards of residuals behavior was obtained using a weights vector based 
on variance of nominal CPUE for each year. The residuals for that model are shown in figure 
6. Although the residuals distribution looks more symmetrical, the tails at the lower and upper 
ends of the qqplot are still evident. This particular model didn’t differ in the binomial part 
from the one presented above but only had two significant predictors (YEAR and latitude). The 
same residuals pattern is apparent in the results shown by Hazin et al. (2018) in their 
abundance indices standardization of mako shark in the Atlantic. 
 
However, the standardized indices of those trials didn’t differ much of the ones obtained using 
the model shown (falling in every case within its 95% confidence intervals), so we decided to 
keep the ones produced by the model described above. 
 
Spatial-temporal heterogeneity in the marine environment greatly affects the biology, 
dynamics, and availability of fish stocks, as well as their vulnerability to fishing gear, thus 
introducing a source of variability in nominal catch rates (Bigelow et al. 1999). Sea surface 
temperature is one of the most important physical factors because it modifies the 
geographical and vertical aggregation patterns of fishes, through its effect on feeding, 
reproductive and migratory behavior, and body thermoregulation (Fonteneau 1998). 
 
The importance of sea surface temperature as an explanatory variable in the present analysis 
is reflected in the effects graphs (figures 7 and 8). Higher temperatures have a negative effect, 
both in the probability of capture and in the number of fish caught. 
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Variability in nominal catch rates can also be related to other physical, chemical, and biological 
processes or factors in the ocean (e.g. water transparency, circulation patterns, frontal zones, 
salinity, plankton, nekton), which together with temperature define the identity, structure, 
and interaction of water masses and can affect the availability of potential prey and the 
capture efficiency of predatory fishes (Laurs et al. 1984, Bigelow et al. 1999). High primary 
productivity on the Pacific coast of the Baja California Peninsula is usually related to coastal 
upwelling activity that injects nutrients into the euphotic zone. The upwelling intensity 
changes in accordance with local combinations of wind conditions and bottom topography, 
modulated by the influence of mesoscale meanders of the California Current (Zaytsev et al. 
2003). As upwelling results in the appearance on the surface of cold water masses from the 
bottom, water temperature is indirectly related to these local high productivity areas but no 
direct causal relationships exist between these two factors. 
 
The coastal nature of upwellings could explain, at least in part, the significance of terms 
containing the distance to the coast (DIST). In this updating, similar to analyses made in 2014, 
2017 and 2021 (González-Ania et al. 2014, 2017, 2021). Those coastal upwelling phenomena 
are not present at lower latitudes of the Mexican coast which explains the significance of the 
LATF:DIST interaction included in the model, both in its binomial and negative binomial parts. 
Other significant interaction, QUARTER:DIST, points at the importance of specific seasons, in 
particular certain areas of the Baja California peninsula, relatively near to the shore. 
 
These circulation patterns mentioned above are affected by warming events that are not 
uncommon in this area of the ocean. It should be noted that the last years of the period under 
study registered the occurrence of two unusual and consecutive warming events known as 
The Blob (TB2013–2015) and the 2015–2016 El Niño (Jiménez-Quiroz et al. 2019). That the 
effect of those events differs according to the particular marine area that is affected could be 
seen in the significance of the MEANTEMP:MEANSSTANOM interaction of both parts of the 
model. Birkmanis et al. (2020) predict shifts in suitable habitat for blue and mako sharks, 
related with higher SST anomalies in the Southern Hemisphere. 
 
Fishery-related factors like hook size and type, fishing depth or bait type were not included in 
this analysis, as data on these factors were not available in the data set we used but could be 
available in the observer data base. However, the inclusion in the model of the interaction of 
fleet with the fraction of night hours in the fishing set (FLEET:PNH, that was significant in the 
count part of the model) was aimed at assessing the effect of an apparent shift to night sets 
in the Mazatlán fleet. This change in fishing strategy is apparently related to fishermen looking 
for species other than sharks, like swordfish (Xiphias gladius). Figure 9 shows a graph 
containing the fraction of fishing sets with zero catch of swordfish, mako and blue shark by 
year in the available data set. A clear negative trend in the fraction of zero swordfish catch 
coincides with a rise in the ones for mako and blue sharks. A shift in the target species, with 
the possible corresponding change in blue and mako sharks CPUE, could not be excluded at 
this time and should be attentively evaluated in future analysis. 
 
The results of this analysis point at the abundance index trends being close to stability in most 
of the analyzed period, taking into account the uncertainty involved. The lower abundance 
index in the last year of the series could be related to the change in the target species 
mentioned above. 
 



11  

The present study is the result of recently initiated work, aiming to merge fishery and 
environmental information from the distribution range of the shortfin mako, and other shark 
species, in the Mexican Pacific, to estimate the best available relative abundance indices, and 
model recent trends in CPUE. Results may be improved by adding other predictor variables to 
the model, extending the time series, and taking into account the size-age and sex structure 
of the catches. Variable transformation and use of generalized additive models (GAMs) may 
also increase the explanatory power of the model, due to the likely nonlinearity of many of 
the functional relationships between probability of catch or catch rate and the predictor 
variables. 
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Table 1. Likelihood-ratio test’s p values, AIC, BIC and Cross Validation MSE obtained in the 
model simplification process (*covariate retained in the model). 

a) Binomial model: 
 

 p LrTest AIC BIC CV 
FLEET:CTCHRATEposswo 0.1166 19050 19621.11 53.10894 
FLEET:PNH 0.4381 19048.6 19612.74 52.9870 
MEANTEMP:MEANSSTANOM* 3.37E-05 19066.47 19602.75 52.98528 
LATF:DIST* 0.006106 19054.8 19605.01 53.09718 
QUARTER:DIST * 5.343E-07 19074.56 19617.81 53.00432 
CTCHRATEposswo 0.5072 19047.04 19604.22 53.00751 
FLEET* 0.028 19049.87 19600.08 53.0964 
PNH* 0.02819 19049.86 19600.08 53.13686 
YEAR* 2.20E-16 19049.87 19600.08 52.94233 

 
b) “Counts” or “positive”, model: 

 p LrTest AIC BIC CV 
FLEET:CTCHRATEposswo 0.8176 19045.1 19595.31 52.97826 
FLEET:PNH* 0.006891 19050.4 19593.64 52.89923 
MEANTEMP:MEANSSTANOM* 0.01662 19049.2 19571.55 53.20744 
LATF:DIST * 0.001628 19053.94 19590.22 53.32253 
QUARTER:DIST* 0.0003901 19057.35 19586.66 53.07155 
CTCHRATEposswo* 1.142E-08 19075.68 19618.92 53.14481 
YEAR* 2.2E-16 19153.72 19592.49 53.30385 

 
 

Table 2. Standardized abundance indices (estimated marginal means for the YEAR factor) from the hurdle 
model fit, their standard errors (se), coefficient of variation (cv) and lower and upper asymptotic 95% confidence 

intervals. 
 

YEAR Index se cv L CI 95% U CI 95% 
2006 1.93 0.37 0.19 1.20 2.66 
2007 0.87 0.24 0.28 0.40 1.35 
2008 0.94 0.23 0.25 0.48 1.39 
2009 0.93 0.27 0.29 0.40 1.46 
2010 0.78 0.23 0.29 0.33 1.22 
2011 1.56 0.38 0.24 0.82 2.30 
2012 1.88 0.55 0.29 0.80 2.95 
2013 1.48 0.36 0.24 0.78 2.18 
2014 0.83 0.24 0.30 0.35 1.31 
2015 0.90 0.27 0.30 0.37 1.43 
2016 0.89 0.25 0.28 0.40 1.38 
2017 1.23 0.30 0.25 0.63 1.83 
2018 0.42 0.16 0.38 0.10 0.75 
2019 1.50 0.37 0.25 0.77 2.22 
2020 0.73 0.26 0.35 0.23 1.23 
2021 1.67 0.30 0.18 1.08 2.26 
2022 0.40 0.17 0.42 0.07 0.72 
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Table 3. Re-scaled values of the estimated abundance indices for the hurdle model and their 95% confidence 

intervals. 
YEAR Re-scaled 

abundance index 
L CI 95% U CI 95% 

 
2006 1.73 1.08 2.39 
2007 0.79 0.36 1.21 
2008 0.84 0.44 1.25 
2009 0.83 0.35 1.31 
2010 0.70 0.30 1.10 
2011 1.40 0.74 2.07 
2012 1.69 0.72 2.65 
2013 1.33 0.70 1.96 
2014 0.74 0.31 1.17 
2015 0.81 0.34 1.29 
2016 0.80 0.36 1.24 
2017 1.10 0.57 1.64 
2018 0.38 0.09 0.67 
2019 1.34 0.69 1.99 
2020 0.65 0.20 1.11 
2021 1.50 0.97 2.03 
2022 0.36 0.07 0.65 
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Figure 1 Mexican shortfin mako shark, I. oxyrinchus, landings estimation in metric tons (live weight) 

by state 
 
 
 

 
 
 
 

Figure 2 Sharks catch composition of the Mexican Pacific coast. 
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Figure 3.-The zones used in the analyses (see text for details). 
 
 

 
 

Figure 4. Relative abundance indices for the shortfin mako shark, I. oxyrinchus, with approximate 
95% confidence intervals. X marks the nominal CPUE. Hurdle model for years 2006-2022. 
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Figure 5. Residuals and Marginal-model plots of the hurdle model. 
 
 
 

 
 
 
Figure 6.  Residuals and Marginal-model plots of the hurdle model, using a weights vector based on 

variance of nominal CPUE for each year. 
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Figure 7. Effects plot for the terms included in the final model, binomial part. 
 
 
 

 
 
 

Figure 8. Effects plot for the terms included in the final model, negative binomial part. 
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Figure 9. Fraction of fishing sets with zero catch of swordfish and shortfin mako and blue sharks by 
year in the available data set. 

 
 


