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Abstract 

This working paper provides a standardized CPUE of blue shark caught by Japanese research 

and training vessels (JRTVs) longline fishery for 1994-2020 in the western and central North 

Pacific. A statistical filtering method was used to remove unreliable set-by-set data after 

2000s collected by JRTVs. The nominal CPUE of the JRTVs was then standardized using the 

spatio-temporal generalized linear mixed model (GLMM) to provide the annual changes in 

the abundance indices in the North Pacific Ocean. The predicted abundance indices of blue 

shark revealed a downward trend until 2008 and an upward trend thereafter with a stable 

trend in recent years. The CPUE trends predicted from the fishery-independent data widely 

collected in the North Pacific Ocean is a very useful information about the abundance in this 

region. 

 

Introduction 

In the previous stock assessment in 2017, the ISC shark working group (WG) used 

standardized CPUE of blue shark (Prionace glauca) caught by Japanese offshore and distant 

water shallow-set longline fishery in the northwestern Pacific from 1994 to 2015 (Kai and 

Shiozaki, 2016) as an abundance indices of base case model (ISC, 2017). The CPUE was 

chosen as the best available indicators of stock abundance for late time. However, a few 

issues were raised with respect to the fishery-dependent data and/or an insufficient analysis of 

the CPUE standardization (e.g., area stratification and target effect in the generalized linear 

model). It is therefore essential to develop alternative abundance indices using a more 

sophisticated tool such as a spatial-temporal model (Thorson et al., 2015) with fishery-

independent data.  

 The JRTVs data were collected from research vessels belonging to, or chartered to, 

national/prefectural fisheries research institutes, and vocational training vessels attached to 

fisheries high schools throughout Japan. The data are treated as one data set because both 

vessels are not commercial fisheries, their operation overlap, and their gear configuration is 

similar (i.e., deep-set fishery). Since the JRTVs data are fishery-independent data, it is 

expected that the data would be accurately reported and has no issue of target shifts. 

However, one issue of the JRTVs data was raised by Clarke et al. (2011) for the lower 

reporting ratio of sharks after 2000s. Kai (2019) mentioned that the main reason for the 

under-reporting between 2001 and 2013 is possibly due to a reduced recording of discarded 

sharks resulting from a revision of the input for in 2000 (an increase in input items). In 2013, 

the Japan Fishery Agency instructed to record accurately the number of all sharks caught, 



2 

 

including the discard, and then the reporting rate of sharks increased after 2013.   

 The objective of this working paper is to provide standardized CPUE of blue shark 

caught by JRTVs longline fishery for 1994-2020 in the western and central North Pacific 

Ocean. First, temporal changes in the reporting rate are analyzed and unreliable set-by-set 

data are removed using a statistical filtering method. Then, the nominal CPUE is standardized 

using a spatio-temporal GLMM for the filtered data. 

   

Materials and Methods 

The author used similar statistical filtering method and spatio-temporal model as those used 

in the paper (Kai, 2019).  

 

Data sources 

Set-by-set longline logbook data collected from JRTVs in the western and central North 

Pacific Ocean from 1992 to 2020 were used and the data includes information on species of 

sharks, operation time, catch numbers, number of hooks, number of branch line between 

floats (HBF), location of sets by latitude-longitude resolution of 1° ×1°, and trip identity. As 

the JRTVs mostly use deep sets (i.e., 6-16 HBF), two types of deep sets (shallower and 

deeper deep sets; HBF < 11 and 10 < HBF) were used in this analysis. The four seasons 

(quarters (Q) 1 to 4) of the year were defined: Q1: JAN-MAR; Q2: APR-JUN; Q3:JUL-SEP; 

Q4:OCT-DEC in the analysis. 

 

Data filtering 

Preliminary filtering was conducted to remove incomplete and insufficient data that have 

little or no information about HBF and locations (latitude and longitude), number of hooks 

that were less than 800, HBF that were less than 6 (i.e., shallow sets), and operations that 

were operated in waters other than the North Pacific Ocean. 

 In addition, follow-up filtering was also conducted to remove unreliable set-by-set 

data caused by under-reporting of actual shark catches. The author used a statistical filtering 

method based on the information on shark presence in the catch (Hoyle et al., 2017; Kai, 

2019) and applied to JRTV data from 2001 to 2013 to accommodate a clear decline in annual 

reporting rates during this period (Fig. 1a).   

 

CPUE standardization with Spatio-temporal model 
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The spatio temporal model is consisted of two components of encounter probability and 

positive catch in a delta model. The first predictor was fixed at a constant value because of 

high positive catches (> 94%). Second predictor was modeled using a negative binomial (NB) 

model to account for the datasets with over-dispersion (variance/mean =14.56): 

�~ �����	 (�∗, �∗(1 + ��� + �∗�
���, 

log  (�� = ��(�� + �(�� + �(�, �� + �(�� + ∑  !"!

#$

!%�
,    (1) 

where c is observed catch,  NegBin (a, b) is a negative binomial distribution with mean a and 

variance b (Lindén and Mäntyniemi, 2011),  �∗ is an expected catch and a function of density 

�  and fishing effort & (number of hooks = 1), σ1 and σ2 are residual variations, ��(�� 

represents temporal variation (the intercept for each year t), �(�� represents spatial variation 

(s), �(�, �� represents spatio-temporal variation (station s and year t), �(�� represents random 

variation in catchability for the �th vessel, and  ! represents the impact of covariate ' with 

value "!  on catchability. The shallow and deep sets and three-month quarters (i.e. 	! = 2, 

"! = ℎ*& +	� ,) are used as covariates (changing the catchability) corresponding to Eq. (1).  

 The VAST (Vector Autoregressive Spatio-Temporal; version VAST_v13_0_0) 

software package for R (Thorson, 2019) was used to standardize the nominal CPUE. To be 

consistent with the period of late time series for Japanese longline fishery, the author used the 

JRTVs data after 1993 in the CPUE standardization. Annual abundance index I was estimated 

as: 

 -(�� = ∑ &(��
#.
/%� × �∗(�, ��/{∑ ∑ &(��

#.
/%� × �∗(�, ��}

#4
5%� ,    (2) 

where ns is total number of knots (i.e., sampling location in this study) and & is fishing effort 

(number of hooks) at location s.  

 

Model selection and diagnostics 

To select the best model, the explanatory variable was sequentially removed from the full 

model in Eq (1). The best model was selected using the AIC (Akaike 1973). For the best 

model, the goodness of fits was examined using the Pearson residuals and QQ-plot. The 

residuals were computed using a randomized quantile (Dunn and Smyth, 1996) to produce 

continuous normal residuals.  

 

Results 

Summary of data filtering 



4 

 

The preliminary filtering reduced the number records for this analysis from 38,720 sets to 

34,810 sets. The follow-up filtering reduced the number of records for this analysis from 

34,810 sets representing 1,425 trips to 31,045 sets representing 1,261 trips. The follow-up 

filtering appeared to be reasonable because the reduction of catch rates between 2001 and 

2013 disappeared (Fig. 1). The difference of annual changes in number of catches, number of 

hooks, and nominal CPUE between the data with and without follow-up filtering are shown 

in Fig. 2.  

 

Selection of the best model and annual trends in CPUE 

All models were reasonably converged with the positive definite of hessian matrix 

and a small value of maximum gradient (Table 1). The saturated model (M_6) including 

spatial, spatio-temporal variances, and variation over vessel as random effects were identified 

by AIC as the most parsimonious model (Table 1). The predicted CPUE changed 

substantially if random effect components were sequentially added to the null model which 

had no random effects (M_1) (Fig. 3). The fixed effect components (HBF and quarter) had a 

small effect on the annual trends in the CPUE but those decreased the values of AIC 

(decrease of AIC for HBF and quarter was 1099 and 464, respectively). Lists of all 

parameters and estimates of the best models are shown in Table 2. The predicted annual 

CPUE of the best model revealed a declining trend for 1994 to 2008, and then it increased 

gradually until 2016 with a stable trend in recent years (Fig. 4). Uncertainty (CV) in the 

CPUE estimates was substantially larger in 1999 and 2020 due to the fact that the fishing 

efforts (number of hooks) were smaller than those of any other years (Table 3).  

 

Model diagnostics 

Diagnostic plots of goodness-of-fit for the best model didn’t show a serious deviation from 

normality and model misspecification (Fig. 5). These results suggested that the fitting of the 

best model to the data was good.   

 

Discussions 

This document paper predicted annual abundance indices of blue shark in the western and 

central North Pacific Ocean from 1994 to 2020 (Fig. 4). The author applied a spatio-temporal 

GLMM to the fishery independent JRTVs data after the author removed unreliable set-by-set 

data with low reporting rates of sharks in 2000s using a statistical filtering method.  

The hotspots of BSH appeared mainly in the temperate waters as shown in past 
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studies (Hiraoka et al., 2016; Kai et al., 2017) and in the subtropical areas off the southwest 

coast of Hawaii (Fig. 6) where adult blue shark occur widely in low-latitude waters (Nakano 

and Stevens, 2008) and Hawaii-based pelagic longline vessels frequently operate in those 

waters (ISC, 2017). 

The predicted annual CPUE could be a candidate of abundance indices for the base-

case model in the upcoming stock assessment of North Pacific blue shark. There are three 

advantages: 1) the wide area coverage in the North Pacific Ocean compared to the other 

CPUEs (e.g. Hawaiian longline fleet), 2) reliability of the reporting ratio compared to 

commercial fisheries, and 3) the statistical soundness of the spatio-temporal model compared 

to the conventional GLM approach (Shelton et al., 2014). It is essential, however, to carefully 

choose the abundance indices for the base-case model, as the time series is of deep-set data, 

which typically catch fewer sharks than shallow-set data, has poor coverage in areas with 

high catch rates in the temperate waters. 

Although the author didn’t consider the seasonal changes in the catch rates as random 

effect due to the limitation of time, it might be useful to include such effect in the spatio-

temporal model in the future work because adult and subadult blue sharks are well known to 

have seasonal migration (Fujinami et al., 2021; Kai et al. 2017).  
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Tables 

Table 1.  Summary of model structure and outputs among different models. All models 

include fixed effects. “Δ” denotes a difference between the value of criteria and the 

minimum value.    

 

 

 

Table 2. List of all parameters and estimates of the selected model.  

 

 

  

Model Catch rate predictors of random effect
Number of

parameters
Deviance ΔAIC

Maximum

gradient

M-1 Null 32 172095 19371 < 0.0001

M-2 Vessel 33 168620 15898 < 0.0001

M-3 Station 36 161991 9276 < 0.0001

M-4 Vessel + Station 37 159614 6827 < 0.0001

M-5 Station + Year and station 38 157882 2081 < 0.0001

M-6 Vessel + Station + Year  and station 39 152710 0 < 0.0001

No Parameter name Symbol Type Estimates

1 Distance of correlation  (Spatial random effect) κ Fixed 0.0023

2 Variation over vessel σ ϵ Fixed 1.37

3 Northings anisotropy h 1 Fixed 1.44

4 Anisotropic correlation h 2 Fixed 0.91

5 Parameter governing pointwise variance (Spatial random effect) η ɤ Fixed 1.56

6 Parameter governing pointwise variance (Spatio-temporal (year) random effect) η θ Fixed 0.51

7 Parameter governing autocorrelation (Spatio-temporal: year random effect) ρ θ Fixed 1.38

8 Residual variation 1 of negative binomial model σ 1 Fixed 0.14

9 Residual variation 2 of negative binomial model σ 2 Fixed 0.20

10 Coefficient of hooks between floats β 1 Fixed -0.551

11 Coefficient of three month quarters β 2 Fixed 0.117

12-37 Intercept for year d 0 Fixed Not shown

38 Vessel effect ϵ Random Not shown

39 Spatial residuals γ Random Not shown

40 Spatio-temporal (year) residuals θ Random Not shown
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Table 3. Summary of annual CPUE predicted by spatio-temporal model along with 

corresponding estimates of the coefficient of variation (CV), annual nominal CPUE, and 

number of hooks in millions. Values are predicted using the best fitting model and scaled 

by average CPUE.  

 

  

Year
Predicted

CPUE

Nominal

CPUE
CV

Number

of hooks

(millions)

1994 1.48 1.27 0.10 4.83

1995 1.44 1.03 0.12 4.63

1996 1.39 1.23 0.10 4.52

1997 1.44 1.47 0.10 4.25

1998 1.39 1.24 0.12 2.76

1999 1.44 1.58 0.19 0.86

2000 1.24 0.95 0.12 2.73

2001 1.17 1.10 0.10 2.91

2002 1.09 1.05 0.10 3.03

2003 1.05 1.33 0.11 2.75

2004 0.96 0.99 0.10 3.09

2005 0.78 0.83 0.12 2.34

2006 0.72 0.71 0.12 2.31

2007 0.64 0.72 0.14 1.51

2008 0.41 0.51 0.13 1.44

2009 0.58 0.69 0.13 0.69

2010 0.79 0.98 0.15 0.75

2011 0.66 0.84 0.15 0.83

2012 0.59 0.84 0.15 0.85

2013 0.79 0.84 0.15 1.17

2014 1.04 0.90 0.16 1.47

2015 0.83 0.83 0.15 1.24

2016 1.09 1.10 0.13 1.19

2017 1.06 1.01 0.12 1.19

2018 0.98 0.92 0.13 1.13

2019 0.98 1.22 0.15 0.91

2020 0.97 0.81 0.17 0.52
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Figures 

 

Fig. 1 Annual reporting rates of catch for sharks (a) before filtering and (b) after filtering. 

 

 

Fig. 2 Annual catch in numbers (thousands) (a), number of hooks (millions) (b), and nominal 

CPUE (per 1000 hooks) (c) for blue shark before filtering (broken line) and after filtering 

(solid line with open circle). 
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Fig. 3 Comparisons of annual predicted CPUE relative to its average among different 

structures of the spatio-temporal model. M_qf and M_hbf denotes the null model with 

effect of season and hbf, respectively. For the details of other models, see table 1. 

 

 

Fig. 4 Annual predicted CPUE relative to its average. Gray solid line denotes nominal CPUE 

relative to its average, shadow denotes 95% confidence intervals, and horizontal dotted line 

denotes mean of relative values (1.0).  
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Fig. 5 Diagnostic plots of goodness-of-fit for the most parsimonious model.  
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Fig. 6 Annual spatial distribution of log-scaled predicted CPUE for blue shark. Number of knot (1480) is the same as that of sampling location.  


