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Summary 

This paper presents an age‐based statistical catch‐at‐length stock assessment using Stock Synthesis (SS) 
for blue sharks in the North Pacific Ocean (NPO). In the previous blue shark stock assessment 
undertaken by the ISC in 2014 it was identified that the resulting stock status conclusions were 
extremely sensitive to the shape of the Low Fecundity Stock Recruitment function (LFSR), and 
consequently further investigation of how the biology of blue sharks can be modelled within the SS 
modelling framework was recommended for future assessments. For the stock assessment presented 
here numerical simulations were used to estimate probable values of stock‐ recruitment steepness for a 
Beverton‐Holt stock‐recruitment curve. The estimated value for steepness was then used for 
determining which combinations of the LFSR parameters are most representative of biological responses 
expected for blue shark. A suite of diagnostics were utilized to evaluate model convergence and fit to 
data sources of three scenarios based on alternative assumptions about stock productivity. Overall, all 
three models showed similar trends of spawning stock biomass (SSB) and management reference points 
over time. Estimates of SSB declined from 1971-1991, followed by an increase until the mid-2000’s. 
More recently, SSB slightly declined from 2009-2013, followed by an increase in the final two years 
(2014-2015). Over the course of the modelled time series, estimated fishing mortality increased abruptly 
in the late 1970s and early 1980’s with a peak around 1989, in response to higher catches. For the last 
two decades, fishing mortality (F) showed a declining trend, with recent values being close to those 
observed in the beginning of the time series. The  historical  trajectory  of  stock  status  revealed  that  
north  Pacific  blue  shark  had experienced  some  levels  of  depletion  and  overfishing  in  previous  
years  showing that the stock moved through the orange  (overfishing) zone  in  the  Kobe  plot.  
However, in the last two decades, the stock condition returned into the Kobe green zone (no 
overfishing, not overfished). 

1 Background 

This paper presents one of two stock assessment approaches being developed by the ISC Shark Working 
Group (WG) for blue shark in the North Pacific Ocean (NPO). The WG agreed to use an age‐based 
statistical catch‐at‐length stock assessment conducted using Stock Synthesis (SS) (Methot and Wetzel, 
2013) (version 3.24F) to assess the status of the stock, as well as use a Bayesian Surplus Production (BSP) 
model to compare with the results from the SS model and the previous assessment conducted by the 
WG in 2014.  

2 General assessment approach 

In the previous blue shark stock assessment undertaken by ISC in 2014 using SS (Rice et al., 2014), it was 
identified that the resulting stock status conclusions were extremely sensitive to the shape of the Low 
Fecundity Stock Recruitment (LFSR) function, and consequently further investigation of how the biology 
of blue sharks can be modelled within the SS modelling framework was recommended. For the stock 
assessment presented here, Kai and Fujinami (2017) conducted a numerical simulation using the 
method of Mangel et al. (2010) to estimate probable values of stock‐ recruitment steepness for a 
Beverton‐Holt stock‐recruitment curve (Beverton and Holt, 1957) for the North Pacific blue shark. The 
estimated value for steepness was then used for determining which combinations of the LFSR 
parameters are most representative of biological responses expected for blue shark. 
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3 Biological inputs and assumptions 

Blue sharks have a pan‐Pacific distribution, and genetic evidence of distinct population structure within 
the Pacific has not been found (Taguchi et al., 2015). Conventional tagging in the eastern, central and 
western North Pacific regions has resulted in recoveries within each neighboring North Pacific region, 
providing evidence of wide movement throughout the North Pacific (Sippel et al., 2011). However, 
tagging data have not demonstrated movement across the equator (Sippel et al., 2011; Stevens et al., 
2010). Consensus within the WG supports a single stock within the North Pacific, distinct from the South 
Pacific, although more information is needed to further explore the potential for size and sex 
segregation in the North Pacific as proposed by Nakano (1994). In addition to assumptions regarding 
stock structure, the other critical information on the biology of blue shark necessary for the SS 
assessment relates to sex‐specific growth, natural mortality, maturity and fecundity. Biological 
assumptions and parameter values used in the SS models are summarized in Table 1. 

3.1 Growth 

The standard assumptions made concerning age and growth in the SS model are (i) the lengths‐at-age 
are normally distributed for each age‐class; and (ii) the mean lengths‐at‐age follow a von Bertalanffy 
growth curve. For any specific model, it is necessary to assume the number of significant age‐classes in 
the exploited population, with the last age‐class being defined as a “plus group”, i.e. all fish of the 
designated age and older. For the results presented here, 24 yearly age‐classes have been assumed. 

Sex‐specific estimates of growth (Fujinami et al., 2016a) and length‐weight parameters (Yamamoto et 
al., 2016) were assumed in the assessment – No attempt was made to estimate growth due to the 
uninformative nature of the size data to track cohorts through time. 

A CV of 0.25 was used to model variation in length‐at‐age. All lengths reported from the assessment 
relate to pre‐caudal length (PCL). 

3.2 Natural mortality 

Age and sex‐specific natural mortality ogives were considered in the assessment. They were calculated 
based on the Method II proposed by Walters et al. (2016) and described in Semba and Yokoi (2016). 

3.3 Maturity and fecundity 

It is critically important to measure spawning potential in the correct units for stock assessment 
purposes. This assessment considered a single maturity ogive and did not consider age/length- specific 
changes in fecundity in the final set of model runs. In Section 5.2 we describe potential relationships 
between pre‐recruit survival and spawning potential (essentially the spawner recruitment relationship) 
that were examined in the assessment. 

For the purpose of computing the stock spawning biomass (SSB), we assume a logistic maturity schedule 
based on length with the age‐at‐50% maturity for females equal to 156.6 cm (Fujinami et al., 2016b). 
There is no information which indicates that sex ratio differs from parity throughout the lifecycle of blue 
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shark. In this assessment the term stock spawning biomass (SSB) is a relative measure of stock spawning 
potential (the mature female population). 

4 Data compilation 

4.1 Spatial and temporal stratification 

The assessment was based on a single North Pacific stock, bounded by the equator in the south, Asia in 
the west, and North and Central America in the east. 

4.2 Temporal stratification 

An annual (Jan 1‐Dec 31) time‐series of fishery data for 1971‐2015 were used for the assessment (Figure 
1). 

4.3 Definition of fisheries 

The WG estimated catches of many fisheries from different nations and member sources in an effort to 
understand the nature of fishing mortality. While the BSP assessment only considered a single catch 
series, the SS model used the 18 fisheries defined in Table 2. The primary sources of catch were from 
longline and drift gillnet fisheries, with smaller catches also estimated from purse seines, trap, troll, and 
recreational fisheries (Figure 2). As in the previous assessment, highest catches came from Japan and 
Taiwan, with newly available Mexican fishery data providing a relatively small, but important source of 
catch.  

4.4 Catch 

 4.4.1 Japan 

Offshore and distant water longline catches were estimated using two time-series of standardized 
CPUEs (1976-1993 and 1994-2015). Since the landings of sharks are frequently underestimated due to 
the lower catches when compared to other teleost species such as tunas and billfishes, total catches 
including retained and discard/released catches were estimated using a product of the yearly changes in 
standardized CPUEs and fishing effort. The former CPUE was estimated by Hiraoka et al. (2013a) and the 
latter CPUE was updated by Kai and Shiozaki (2016). The former and latter catches were converted to 
biomass using the mean weight by season and area (Hiraoka et al., 2013a). The estimation methods and 
estimated catch amount can be found in Kai et al. (2014) and Kai (2016), respectively.  

Japanese coastal fishery catches (coastal and other longline, drift net, set-net, bait fishing, others) were 
updated from 1994 to 2014 (Kai and Yano, 2016). Most of the Japanese shark catch data were reported 
in species aggregated form as "sharks", thus the ratio of the catch of blue shark among those of sharks 
by fishing gear were calculated using available species specific landing data, and used to estimate the 
catch of blue shark. The Japanese coastal fishery catches prior to 1994 were provided in Yokawa (2012) 
and Kimoto et al. (2012). 



6 
 

4.4.2 Taiwan 

Taiwan small scale longline catches were updated in Liu et al (2016a). Large scale longline catch was 
estimated in two areas (0-25 degrees north of equator; and northwards of 25 degrees) using catch rates 
multiplied by effort in the two separate areas (Tsai and Liu, 2016). 

4.4.2 Republic of Korea 

The Korean annual reports for the 2010 and 2011 WCPFC SC meetings indicated that the catch of major 
shark species reported in logbooks includes only blue and “other” sharks (reported as “porbeagle” 
sharks but since corrected to “other” sharks, Y. Kwon pers. comm.).  Observer records for one year 
showed that 65% of the catches of major shark species was comprised of blue shark for one year.  The 
Korean annual report to the WCPFC in 2010 indicated that the average CPUE of blue shark caught by 
Korean longliners was 0.07 (number/100 hooks) based on observer data.  Using the annual aggregated 
shark catch and effort data submitted to the ISC, and an average blue shark size of 30 kg, the average 
size caught in a comparable Japanese longline fishery, estimated CPUE by year in number of blue sharks 
per 1000 hooks caught by Korean longliners ranged from 0.0 to 0.89 which is comparable to the average 
CPUE obtained by the Korean observer data.  For this assessment, Korean blue shark catch was assumed 
to be equal to North Pacific species-aggregated shark catch reported to the ISC (various shark species, 
code SHK).  Beginning in 2013, a small amount of shark catch was reported as blue shark, which was 
added to the species-aggregated shark catch for the assessment time series.  Kwon et al. (2017) 
developed an independent estimate of Korean longline blue shark catch for the period 1973-2015.  
Catch estimates were derived by applying area-specific CPUE based on observer data to Korean longline 
fishing effort recorded in logbooks.  Careful review of the catch estimation methodologies and time 
series was not possible in time for the assessment; however, the magnitude and trends in the catch time 
series were quite similar to those developed by the SHARKWG.  

4.4.3 China 

China longline species-specific catch and effort were available for 2007-2015 and effort data were 
available back to 2001.  The mean annual CPUE for 2007-2015 was applied to effort data for 2001-2006 
to estimate catch for those years.  It was assumed that effort of Chinese longliners in the North Pacific 
was minimal prior to 2001.    

4.4.4 Canada 

Blue shark bycatch in Canadian fisheries were estimated from a combination of observer and logbook 
records from 1979-2015 for groundfish, salmon, sardine, albacore, hake and squid fisheries (King and 
Surry, 2016). Minor adjustments to previous estimates were based on newly available information.  

 4.4.5 USA 

Blue shark catch in US fisheries including the Hawaii-based longline fleet, as well as west coast drift 
gillnet, recreational, albacore troll fleets and small longline fisheries were provided in Kohin et al (2016). 
Estimation methods were consistent with those used in the 2014 assessment, except the discard 
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mortality rate estimate used for the Hawaii based longline fishery was updated, and catches from the 
albacore troll fishery (less than 1 mt annually) had not been previously estimated.  

 4.4.6 Mexico 

Total blue shark catches were calculated from artisanal, commercial longline, and historical drift 
gillnet fisheries. Catches were sourced from annual fishery statistics yearbooks of SAGARPA (the 
Mexican fishery authority - provided by INAPESCA) from five Mexican States (Baja California, Baja 
California Sur, Sinaloa, Nayarit and Colima), published articles and reports (including grey literature) 
(Castillo-Geniz et al., 2017; Sosa-Nishizaki and Castillo-Geniz, 2016).  

 4.4.7 IATTC members 

IATTC provided estimates of blue shark bycatch in tuna purse seine fisheries in the north EPO.  The 
methods were the same as for the last stock assessment.  The number of blue sharks caught from 1971-
2015 was estimated from observer bycatch data, and observer and logbook effort data.  Some 
assumptions regarding the relative bycatch rates of blue sharks were applied based on their temperate 
distribution and catch composition information.  Estimates were calculated separately by set type, year 
and area.  Small purse seine vessels, for which there are no observer data, were assumed to have the 
same blue shark bycatch rates by set type, year and area, as those of large vessels.  Prior to 1993, when 
shark bycatch data were not available, blue shark bycatch rates assumed to be equal to the average of 
1993-1995 rates were applied to the available effort information by set type, area and year.  Numbers of 
sharks were converted to tons by applying an average annual weight estimate derived from blue sharks 
measured through the IATTC observer program.   

 4.4.8 SPC 

Blue shark longline catches for non-ISC member countries in the WCPFC area north of the equator were 
estimated from SPC observer data holdings.  Catches during 1995-2010 were estimated based from 
standardized CPUE values for each 5 x 5 degree cell multiplied by the effort reported in that cell 
summed on an annual basis.  The non-ISC countries represented in the dataset include 12 countries, 
many of them that likely fish only south of the equator, thus it is believed that the north Pacific blue 
shark catch of non-ISC member countries represented in the WCPFC database is attributed to Federated 
States of Micronesia, Kiribati, Marshall Islands, Papua New Guinea and Vanuatu.  Total dead removals 
are assumed to be the same as longline catches.  For 2011-2014 the reported effort in the North Pacific 
(publically available Category 1 data; https://www.wcpfc.int/node/4648) was multiplied by the 2000-
2010 average CPUE based on the estimated catch for non-ISC members divided by total effort data for 
the North Pacific. 

4.5 Abundance indices 

Indices of relative abundance were developed with fishery data from five nations or information 
sources. Four of these abundance indices were updated with data available since the 2014 assessment 
or reused from that assessment, and one new index was developed by Mexico.  
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4.5.1 Japan 

Abundance indices from Japanese offshore and distant water shallow-set longline fisheries were 
updated for the period from 1994 to 2015 (Kai and Shiozaki, 2016). Catch per unit of effort (CPUE) was 
standardized using a generalized linear model with negative binomial error distributions. A continuous 
time series of data was used to standardize the CPUE without separation of the data after the Tsunami 
in 2011.  The abundance indices before 1994 were estimated by Hiraoka et al. (2013b).  

 4.5.2 Taiwan 

The abundance index was developed with a delta lognormal generalized linear model using observer 
data from the Taiwanese large scale longline fisheries for the 2014 assessment was updated through 
2015 (Tsai and Liu, 2016).  

4.5.3 USA 

The abundance indices developed with delta lognormal generalized linear models using observer data 
from the Hawaii deep-set and shallow set longline fisheries for the 2014 assessment were updated 
through 2015 (Carvalho, 2016).  

 4.5.4 Mexico 

An abundance index was developed with generalized linear models using observer data from Mexican 
longline fishery in Pacific (Fernandez-Mendez et al., 2016).  

4.5.5 SPC 

The same relative abundance index developed with longline observer data during 1993-2009 for the 
2014 assessment was included (Rice and Harley, 2014). 

4.6 Catch-at-length 

Length composition data were provided for different fisheries from Japan, Taiwan, South Korea, China, 
USA and Mexico. The request was for sex-specific data in the observed measurement units (FL – fork 
length, TL – total length, DL – dorsal length, AL – alternate length) which were subsequently converted 
to precaudal length (PCL) using agreed conversion equations. The conversion equations used to prepare 
data for this assessment were (Carvalho and Sippel, 2016); 

PCL = (FL x 0.894) + 2.547 

PCL = (TL x 0.748) + 1.063 

PCL = (AL x 2.462702) + 12.7976 

PCL = (DL x 2.56) + 9.97 
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The data were also requested with vessel coordinates where samples were taken in order to investigate 
spatially-explicit size and sex structure. Some data were provided with exact coordinates and some data 
were summarized into spatial blocks (1x1, 5x5, or 20x10) (Sippel et al., 2016). Some of the conversion 
equations used in the spatial analyses differed from those listed above. 

4.6.1 Japan 

Japan provided blue shark size data from the following fishery data sources; Kinkai shallow longlines 
(Hiraoka et al., 2011), research and training longline vessels (Ohshimo et al., 2014, 2016), small scale 
longlines (Kimoto et al., 2012), the longline observer program, and drift gillnets (Yokawa, 2012).  

Size data from longline gear comprised 97% of all Japanese size data and it was divided into shallow set 
longline (shallow LL) and deep set longline (deep LL) based on operational patterns (i.e., night or 
daytime), the number of hooks per basket (HPB), and location of sets.  

Size data categorized as “Kinkai shallow” included data from shallow-set research and training vessels, 
shallow-set observer longlines, small scale shallow-set longlines, and Kinkai-shallow longliners, fishing at 
night and targeting sharks and swordfish. 

Size data categorized as “Kinkai deep” included data from deep-set research and training vessel, deep-
set observer longlines, and deep-set small scale longlines fishing during the day for tunas.  and size data 
from the other Japanese fisheries were categorized as “Enyo-deep”. 

Size data from the large mesh drift gillnet fishery was also provided.  

4.6.2 Taiwan 

Size data of small scale longline collected by observers from 2014-2015 were reported by Liu et al. 
(2016a). Size data of large scale longline collected by observers from 2004 to 2014 were reported Liu et 
al (2016b).  

4.6.3 South Korea 

Lengths measured by observers on South Korean longline vessels were provided from 2005-2008 and 
2013-2014. The majority of sampling prior to 2008 was from the WCPO, but starting in 2008 sampling 
effort moved to the EPO (Kim et al., 2016). 

 4.6.4 China 

No documentation about the collection of size data from Chinese fisheries was provided. However, 2146 
lengths measured in FL, TL or PCL were provided during 2009-2015 from observers on Chinese longline 
vessels.  

 4.6.5 USA 

Collection of composition data by observers in the Hawaii-based longline fisheries (deep and shallow 
set) has been described in Walsh and Teo (2012) and Sippel et al. (2014), from observers in the US West 



10 
 

Coast drift gillnet fishery (Teo et al., 2012), and a small-scale scientific survey of juvenile sharks in 
Southern California (Runcie et al., 2014). 

 4.6.6 Mexico 

Size data were collected by observers opportunistically deployed in Mexico’s Ensenada and San Carlos 
based longline fleets during 2006-2014 (Castillo-Geniz et al., 2017). 

5 Population and fishery dynamics 

The model partitions the population into 24 yearly age‐classes in the North Pacific Ocean. The last age‐
class comprises a “plus group” in which mortality and other characteristics are assumed to be constant. 
The population is “monitored” in the model at yearly time steps, extending through a time window of 
1971‐2015. The main population dynamics processes are as follows: 

5.1 Abundance indices 

CPUE series are critical to every assessment and candidate standardized abundance indices were 
developed from catch and effort data of Japanese, Taiwanese, Mexican, and US longline fisheries, and 
longline fisheries in the tropical north Pacific subject to the SPC observer program (Figure 3). It is well 
known that bias and uncertainty in the assessment results can occur if multiple indices with confounding 
trends are used in the same assessment. A suite of criteria were therefore used by the WG to select 
indices for the base case and sensitivity runs from the candidate indices. Key criteria include data 
quality, spatio‐temporal coverage of data, potential changes in regulations and/or fishing operations, 
and the adequacy of diagnostics from model‐based standardizations.  

5.2 Recruitment and the Low-Fecundity Spawner-Recruitment Relationsip (LFSR) 

In this model “recruitment” is the appearance of age‐class 1 fish. The results presented in this WP were 
derived using one recruitment episode per year, which is assumed to occur at the start of each year. 
Annual recruitment deviates from the recruitment relationship were estimated, but constrained 
reflecting the limited scope for compensation given estimates of fecundity. As in the previous ISC blue 
shark stock assessment, a survival based spawner‐recruitment function was used (Taylor et al., 2013) 
which we refer to as the Low Fecundity Spawner Recruitment relationship (LFSR).  

Recruitment (𝑅𝑅𝑦𝑦) in each year is then defined as: 

𝑅𝑅𝑦𝑦 =  𝑆𝑆𝑦𝑦𝐵𝐵𝑦𝑦                    Equation 1 

Where 𝐵𝐵𝑦𝑦 is the spawning output in year y and 𝑆𝑆𝑦𝑦 is the pre‐recruit survival given by: 

𝑆𝑆𝑦𝑦 = exp�−𝑧𝑧0 + (𝑧𝑧0 −  𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) �1 − �𝐵𝐵𝑦𝑦
𝐵𝐵0
�
𝛽𝛽
��                      Equation 2 

Where: 
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𝑧𝑧0 =  − log �𝐵𝐵𝑦𝑦
𝐵𝐵0
�, where 𝑅𝑅0 is the recruitment at equilibrium, resulting from the exponential of the 

estimated log (𝑅𝑅0) parameter, and 𝐵𝐵0is the equilibrium spawning output. 

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑧𝑧0(1−  𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) is the limit of the pre‐recruit mortality as depletion approaches 0, parameterized 
as a function of 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (which represents the reduction in mortality as a fraction of 𝑧𝑧0); and, Beta (𝛽𝛽) is a 
parameter controlling the shape of density‐dependent relationship between spawning depletion and 
pre‐recruit survival. During the previous ISC blue shark stock assessment no information regarding the 
stock recruitment relationship was available.  

In the way that the LFSR is set up in SS, values of 𝛽𝛽 < 1 has survival increasing fastest at low spawning 
output (concave decreasing survival (Figure 4A), whereas 𝛽𝛽 > 1 has the increase in survival occurring 
fastest closer to the unfished equilibrium (convex decreasing survival (Figure 4B)).  As observed by Rice 
et al. (2014) it is unlikely that blue shark survival would decrease fastest at low stock size; instead it is 
reasonable to expect that for a low-fecundity species, offspring survival would decrease faster due to 
competition when the population approaches carrying capacity (𝛽𝛽 > 1). Then, Rice et al. (2014) 
considered a wide range of LFSR shapes which gave similar productivity to that assumed in the 
production model developed simultaneously at that time. The selected values were 0.1, 0.3 and 0.5, for 
𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  and 1, 2 and 3 for 𝛽𝛽.    

Kai and Fujinami (2017) applied the simulation method developed by Mangel et al. (2010) to estimate 
probable values of stock‐ recruitment steepness (ℎ) for a Beverton‐Holt stock‐recruitment curve for 
North Pacific blue shark. Results indicated that the mean steepness (ℎ) was 𝜇𝜇ℎ = 0.67 with a standard 
deviation of 𝜎𝜎 = 0.073.  We did not attempt to estimate 𝛽𝛽 or 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 inside the stock assessment model 
because it is a task harder than estimating ℎ as an extra parameter is involved. However, using 
equations from Taylor et al. (2013), 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 could be parameterized in terms of ℎ, 𝑍𝑍0, and 𝛽𝛽 (equation 3).  

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = log(5 ∗ ℎ) (𝑍𝑍0 ∗ �1 − 0.2𝛽𝛽�)⁄                                            Equation 3 

Using equation 3 and life history information provided by Kai and Fujinami (2017) we calculated 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 
under the selected values of 1, 2, and 3 for 𝛽𝛽. The resulted values for 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 were 0.467, 0.391, and 0.378 
for 𝛽𝛽 fixed at 1, 2, and 3, respectively (Figure 5). 

5.3 Initial population state 

It is not assumed that the blue shark population was in an unfished state of equilibrium at the start of 
the model (1971) as significant longline fishing occurred in the region from the 1950s and in Japanese 
coastal waters prior to that. As in the previous ISC blue shark stock assessment this stock assessment 
assumed an initial equilibrium catch of 40,000 mt. 

This value represent approximately 100% of the first four years estimated catch. For this approach we 
had to choose a selectivity to assign this catch to. The selectivity estimated for one of the Japanese 
fleets (F4 JPN_KK_SH) was selected as it dominated catches in the early years and its selectivity was not 
extreme towards small or large fish. 

The population age structure and overall size in the first year is determined as a function of the estimate 
of the first years recruitment (R1) offset from virgin recruitment (R0), the initial ‘equilibrium’ fishing 
mortality discussed above, and the initial recruitment deviations. As the size data were found to be 
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uninformative about initial depletion and recruitment variation only a small number of initial 
recruitment deviates were estimated. 

5.4 Selectivity curves 

A double‐normal functional form was assumed for all selectivity curves and an offset on the peak and 
scale was estimated for sex‐specific differences in selectivity that were evident in the data. Selectivity is 
fishery‐specific and temporal variations in selectivity were captured by the time blocks employed for F8 
(2011; 2006-2014; 2015), F14 (1990-2005; 2006-2015), and F16 (1995-2005; 2006-2015). A cubic spline 
was used for fitting to size composition data for F17, since it was not possible to obtain model solutions 
using the double-normal functional form due to extreme peaks in the size-composition data. The 
parameterization of the cubic spline function estimates a starting and ending gradient and a selectivity 
value at each node using a smoothing function to connect the nodes (cubic spline selectivity curve). 
Given its flexibility, the benefit of this function is not just to increase additional process but also reduce 
the potential misfit of size compositions without introducing too many highly-correlated nodes. 
Selectivity patterns of fisheries without size composition data were mirrored to (assumed equal to) the 
selectivity patterns of fisheries with similar operations and areas for which a selectivity pattern was 
estimated. Mirrored selectivity patterns were based on expert opinions of members of the working 
group (Table 3). 

5.5 Parameter estimation and uncertainty 

Model parameters were estimated by maximizing the log‐likelihoods of the data plus the log of the 
probability density functions of the priors, and the normalized sum of the recruitment deviates 
estimated in the model. For the catch and the CPUE series we assumed lognormal likelihood functions 
while a multinomial was assumed for the size data. The maximization was performed by an efficient 
optimization using exact numerical derivatives with respect to the model parameters (Fournier et al. 
2012). Estimation was conducted in a series of phases, the first of which used arbitrary starting values 
for most parameters. The SS control file “BSH.ctl” documenting the phased procedure, initial starting 
values and model assumptions are available from the lead author. 

The Hessian matrix computed at the mode of the posterior distribution was used to obtain estimates of 
the covariance matrix. This was used in combination with the Delta method to compute approximate 
confidence intervals for parameters of interest. 

5.6 Data weighting 

Some size and sex composition data of catch were available. Many of the time series suffered from low 
sample sizes and inconsistencies across years. We assumed an annual sample size proportional to the 
number of fishing trips, with a max of 100, for each record as:  

ESSj,y is the annual effective sample size for the fleet 𝑗𝑗 in year 𝑦𝑦, and it is calculated by (equation 4): 

𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗,𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑛𝑛, 100)             Equation 4 

Where 𝑛𝑛 is the number of fishing trips. 
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It is well known that the results of fishery stock assessments based on integrated model can be sensitive 
to the values used to weight each of the data types included in the objective function. The weight given 
to each data point in a stock assessment model is determined by a measure of the assumed size of the 
error associated with that point: typically a coefficient of variation (CV) for abundance indices, and a 
sample size for composition data. If we change the data weighting, we change the balance between the 
different data sets, and thus change the parameter estimate. Punt (2016) provided a comprehensive 
review and a comparison of various iterative re‐weighting methods for length composition data. The 
iterative re‐weighting approach attempts to reduce the potential for particular data sources to have a 
disproportionate effect on total model fit, while creating estimates of uncertainty that are 
commensurate with the uncertainty inherent in the input data.  

In this stock assessment we conducted a two stage Francis (2011) data weighting approach. In stage one 
we assume a minimum average standard error (SE; on the natural log scale) for each CPUE series. In 
stage two, the McAllister and Ianelli-2 method (using the harmonic mean) is applied to estimate the 
effective sample size of each length composition data from the residuals of the Stock Synthesis model fit 
to the data.  

Stage 1. The relative CPUE to its mean were assumed to have log-normally distributed errors with 
standard error (SE) in log-space (log(SE)) which was approximated as sqrt (log(1+CV2)). The log (SE) of 
each CPUE were estimated by the statistical model in the standardization process. The estimated log 
(SE) only capture observation error within the statistical model but it does not reflect the inherent 
process error between the unobserved vulnerable population and the observed CPUE. We therefore 
assumed a minimum average log (SE) for each CPUE of 0.1. If the average log(SE) for each CPUE was 
smaller than 0.1, the estimated log (SE) was scaled to 0.1 by adding a constant value to the time series 
of estimated log (SE). If the average estimated log (SE) was larger than 0.1 the values were not changed. 

Stage 2. After an initial model run with the input CVs adjusted for each CPUE as described above, the 
input sample sizes for the length composition data for fleets F1, F3, F4, F5, F7, F8, F14, F16, and F17  
were adjusted one time with variance adjustment multiplication factors so that the sample size entered 
for each length composition data set was equal to the effective sample size obtained using the 
McAllister and Ianelli (1997) method. 

6 Model diagnostics 

There are limited diagnostics available for assessing the goodness of fit and identifying model 
misspecification in integrated fishery stock assessment models (Carvalho et al., 2017).  

6.1 Residual analysis 

Residuals are examined for patterns to evaluate whether the model assumptions have been met (e.g., 
Wang et al., 2009). Many statistics exist to evaluate the residuals for desirable properties. One way is to 
calculate, for each abundance index, the standard deviation of the normalized (or standardized) 
residuals divided by the sampling (or assumed) standard deviation (SDNR) (Breen et al., 2003; Francis, 
2011; Carvalho et al., 2017). The SDNR is a measure of the fit to the data that is independent of the 
number of data points. A relatively good model fit will be characterized by smaller residuals (i.e. close to 
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zero) and a SDNR close to 1. In addition, the root‐mean‐square‐error (RSME) was used as a goodness‐of‐
fit diagnostic, with relatively low RMSE values (i.e., RMSE < 0.2) being indicative of a good fit. 

6.2 Age-structured production model (ASPM) 

The ASPM diagnostic intends to evaluate the influence of data sets on absolute abundance (Maunder 
and Piner, 2015; Carvalho et al., 2017). This diagnostic may also be used to determine if a stock is 
recruitment-driven, fishery-driven, or a combination of both. Here we use the ASPM to determine 
whether information on temporal recruitment variability is needed to interpret the information about 
absolute abundance contained in the index of relative abundance. To conduct the ASPM diagnostic we 
follow the protocol provided in Mint-Vera et al. (2017) as follows: 

1) run the SS base case model;  
2) fix selectivity parameters at the maximum likelihood estimate (MLE) from the base case model, 
3) turn off the estimation of all parameters except the scaling parameters and the parameters 

representing the initial conditions (a parameter for the equilibrium recruitment and a 
parameter for the equilibrium fishing mortality), set the recruitment deviates to zero (early 
recruitment and model period recruitments), and set the recruitment bias correction to zero (in 
order to achieve this in SS V3.24f the estimation phase of the recruitment deviates needs to be 
set to a large number, e.g. 50, and the maximum estimation phase needs to be set to a smaller 
value, e.g. 10); 

4) fit the model to the indices of abundance only; 
5) compare the estimated trajectory to the one obtained in the fully integrated model.   

6.3 R0 profile 

Likelihood profiles are used to check that a solution has actually been found (a minimum likelihood 
exists) and to evaluate the information content of the data. It is not uncommon for indices to contain 
insufficient information to estimate the parameters of a stock assessment model. Indices may also be 
conflicting and fitting therefore involves weighting averages of contradictory trends. This generally 
produces parameter estimates intermediate to those obtained from the data sets individually. 
Likelihood profiles on the average recruitment 𝑅𝑅0 by data component were plotted to evaluate the 
information in each series in relation to the estimated parameters. 

6.4 Stock assessment strategy 

The development of a stock assessment model is comprised of the model processes, data and statistical 
methods for comparing data to predictions. Systematic misfit to data or conflict between data within an 
assessment model should be considered as a diagnostic of model misspecification. 
 
Unacceptable model fit (i.e. model predictions do not match the data) can be detected by either the 
magnitude of the residuals being larger than implied by the observation error, or trends in residuals 
indicating systematic misfit. Data conflicts occur when different data series, given the model structure, 
provide different information about important aspects of the dynamics. Unacceptable model misfit or 
conflict between data can be dealt with by either data weighting or model process changes/flexible 
model parametrization. 
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Because it is difficult to determine the underlying cause of the model misfit and conflict, we often 
assume that some data are more reliable than other data for determining particular aspects of the 
population dynamics (Francis 2011). Our goal is to create a dynamic model of all the available data that 
fits the data well and is internally consistent. Internal consistency implies all data are fit as well as their 
observational errors and trends in residuals are minimized. Important aspects of the dynamics (scale, 
trend and relative scale) should be derived from the most trusted data sources. 
 
Our modelling approach can be summarized as the following steps:   

1) Selection of the data and estimation of the true sampling error;  
2) Development of the initial model with original sampling error;  
3) Determine if CPUE indices have information on scale and prioritize data;  
4) Run stock assessment model; 
5) Apply model diagnostics;  
6) Modify or add additional process based on diagnostics and complete steps 4  to 6 again until 

internally consistent model is achieved;  
7) Re-weight the data as needed. 

 
The models selected for presentation in this WP used: the CPUE series recommended by the WG (JPN 
early and JPN late); the best practice approach for weighting size frequency data to ensure that the data 
don’t overwhelm the abundance indices; sigma r of 0.3; initial catch fixed at 40,000 mt, and three 
combinations for the parameters of the LFSR (𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.467 and Beta=1; 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.391 and Beta=2; and 
𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.378 and Beta=3). This gave a total of three model runs.  

In order to examine the effects of assuming an alternative stock recruitment relationship, we conducted 
a sensitivity analysis using the Beverton-Holt stock recruitment relationship available in SS. The 
steepness parameter ℎ was fixed at 0.67, based on Kai and Fujinami (2017).  

7 Results 

In this section we focus on providing information to assist the WG on selecting the best case model. 
Here we present key results and diagnostics for all three models developed. 

7.1 Model convergence 

All estimated parameters in the three models were within the set bounds, and the final gradients of the 
models indicated that the models had converged onto a local or global minimum. 

Convergence to a global minimum was examined by randomly perturbing the starting values of all 
parameters by 10 percent and by randomly assigning the estimated phase. Improved fit would confirm 
that the models had not converged to the global solution. There is no evidence of substantial differences 
in the scaling parameter (𝑅𝑅0) and total likelihood showing a better fit in all three models. Based on 
these results, it is concluded that the models are relatively stable with no evidence of lack of 
convergence to the global minimum.  
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7.2 Model fit diagnostics  

The performance of the models was assessed by comparing input data with predictions for two data 
types: abundance indices and size compositions. Abundance indices provide direct information about 
stock trends and composition data inform about strong and weak year classes and the shape of 
selectivity curves (Francis 2011).  

The model fits to the CPUE indices by fishery are provided in Figures 6 to 8 and Table 4. The fit to the 
CPUE indices were summarized into two groups: (1) those in which indices contributed to the total 
likelihood (S5_JPN_EARLY and S6_JPN_LATE), and (2) those in which indices did not contribute to the 
total likelihood (S1_HW_DP; S3_TAIW_LG; S9_SPC; S10_MEX). Results showed that both abundance 
indices S5_JPN_EARLY and S6_JPN_LATE had RMSE < 0.2 and SDNR values < 1, which indicate that the 
models fit those CPUE indices well. However, all the other indices had values for RMSE > 0.2 and SDNR > 
1, which indicate that those indices were not consistent with the data included in the model.  

The models fit the length modes in data aggregated by fishery and season fairly well given the estimated 
effective sample sizes (effN) (Figures 9 to 11), and the results of the estimated selectivity patterns were 
consistent with the assumed selectivity patterns (Figures 12 to 14).  

Figure 15 presents the results of the likelihood profiling on log (𝑅𝑅0) for each data component for the 
model using 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.391 and Beta = 2 (the other two models showed very similar results, and are 
available upon request). Detailed information on the changes in negative log‐likelihoods (NLL) among 
the various fisheries’ data are shown in Tables 6 and 7. Changes in NLL each data component indicated 
how informative that data component was to the overall estimated model fit. Ideally, relative 
abundance indices should be the primary sources of information on the population scale in a model 
(Francis, 2011). The changes in NLL of abundance indices showed a reasonably concave shape and the 
minimum value (0) was close to that of total likelihood log(𝑅𝑅0) = 11.3. 

S5_JPN_EARLY and S6_JPN_LATE showed the largest changes in NLL across values of log (𝑅𝑅0) among 
abundance indices (Table 5). The changes in NLL was also high for S3_TAIW_LG, although this index was 
not included in the total likelihood of the model. S5_JPN-Early showed the largest change in likelihood 
across values of 𝑅𝑅0, while S10_MEX showed the lowest change in likelihood across values of 𝑅𝑅0 among 
all indices. The MLE estimate for log(𝑅𝑅0) of S5_JPN_EARLY and S6_JPN_LATE matched a local minimum 
of 11.3 observed in the fleet combined likelihood profile for index data.  

Overall, the changes in log‐likelihoods among the nine length composition data sources were smaller 
than those from the abundance index, over the range of log(𝑅𝑅0) values (Table 6). Two out of the nine 
fleets (JPN kinkai shallow and JPN enyo-deep) had minimum relative negative log‐likelihoods that 
occurred at 11.3. 
 
There was a significant level of agreement between the length composition data and the abundance 
indices based on log(𝑅𝑅0) likelihood profiles. In other words, the generalized‐size composition data did 
not stop the model from fitting abundance data. 
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7.3 Biomass 

Overall, all three models showed similar trends of SSB and management reference points over time. 
Estimates of SSB declined from 1971 to 1991, followed by an increase between 1995 and 2007 (Figure 
16). More recently, SSB slightly declined from 2009-2013, followed by an increase in the final two years 
(2014-2015). Recruitment (age‐1 fish) estimates varied around a mean of 37,000 (in 1000’s) (Figure 17). 
Over the course of the modelled time series, estimated fishing mortality increased abruptly in the late 
1970s and early 1980’s with a peak around 1989, in response to higher catches. For the last two decades 
F showed a declining trend, with recent values being close to those observed in the beginning of the 
time series (Figure 18). SS provides estimates of the MSY‐related quantities, these and other quantities 
of interest for management for all three models are provided in Table 7.   

Degrees  of  stock  depletion  and  overfishing  for the three stock  assessment models  were  illustrated 
using the “Kobe plot”(Figure 19). Compared to MSY‐based reference points, the current spawning 
biomass (average for 2013‐2015) was well above SBMSY, and the current fishing mortality (average in 
2013‐2015) was well below FMSY. The  historical  trajectories  of  stock  status  revealed  that  North  
Pacific  blue  shark  had experienced  some  levels  of  depletion  and  overfishing  in  previous  years  
showing that the  trajectories  moved through the orange  (overfishing) zone  in  the  Kobe  plots.  
However, in the last two decades, the stock condition returned into the Kobe green zone (not 
overfished, no overfishing). This stock assessment defaulted to evaluating stock status according to 
SBMSY and FMSY, but management bodies have not yet set biological reference points for this stock.  

The ASPM produces similar estimates of abundance to the fully integrated model using 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.391 
and Beta = 2 suggesting that there is information about absolute abundance in the indices of relative 
abundance and how it is depleted by the catch (Figure 20). 

8 Sensitivity analysis 

For the sensitivity run, which used the Beverton-Holt stock recruitment relationship, comparisons of 
spawning stock biomass and fishing intensity trajectories were completed, as well as a Kobe plot was 
produced  (Figures 21). When compared to the models using the LFSR, the sensitivity run produced 
similar trends in SB and fishing mortality over time. However, the sensitivity run produced a slightly 
more optimistic stock status in the terminal stock assessment year (Figure 21).  

9 Discussion 

All of the models are expected to describe the status and trends of blue shark in the North Pacific. The 
models exhibited little to no conflict in the 𝑅𝑅0 profiles. The gradients of likelihood resulting from size-
composition data is low, and therefore the CPUE indices were influential in driving the model in the 
fitting process. As a result, the fits to the indices and size composition data were acceptable. 
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Table 1. Key life history parameters and model structures used in the North Pacific blue shark stock 
assessment, including values, pertinent comments, and references. 

 

Parameter Value Comments Source 
Gender 2 Two sex model ISC (2014) 

Natural mortality  Age-specific natural 
mortality Tmax=24  

Semba and 
Yokoi (2016) 

Reference age (a1) 1 Fixed parameter Fujinami et al. 
(2016a) 

Maximum age (a2) 20 

Female at first age 4 

Length at a1 (L1) 64.4 (Female) 

68.2 (Male) 

Length at a2 (L2) 244.6 (Female) 

261.3 (Male) 

Growth rate (K) 0.147 (Female) 

0.117 (Male) 

CV of L1 (CV=f(LAA)) 0.25 (Female); 0.25 (Male); ISC(2014) 

CV of L2 0.1 (Female); 0.1 (Male); 

Weight-at-length W=5.388 x 10-6L3.102 (Female);  Yamamoto et 
al. (2016) 

W=3.293 x 10-6L3.225 (Male) 

Length-at-50% Maturity 156.6 (Female) Fujinami et al. 
(2016b) 

Slope of maturity ogive - 0.16 (Female) 

Fecundity (Litter size; 
(4)eggs=a+b*L) 

Proportional to body length Model structure 

Slope of fecundity (b) 0.46 Fixed parameter 

Intercept of fecundity (a) -45.54 

Spawning season 1 Model structure (No season) 
 

Fujinami et al. 
(2016b) 

Spawner-recruit 
relationship 

Low Fecundity SR- 
relationships (LFSR)  

Model structure Kai and 
Fujinami (2017) 
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Spawner-recruit 
steepness (h) 

0.67 (reference) Model structure Kai and 
Fujinami (2017) 

LFSR (Sfrac) 0.378  
0.391  
0.467 

LFSR (Beta) 1  
2  
3  

Log of Recruitment at 
virgin biomass log(R0) 

11.1358 (Initial value) Estimated ISC (2014) 

Recruitment variability 
(σR) 

0.3 Fixed parameter 

Initial age structure 5 yrs (1985-1989) Estimated 

Main recruitment 
deviations 

1990-2013 Fixed 

Bias adjustment 1990-2013 

F ballpark for tuning 
early phases 

0.2 

F ballpark year 2013 

F-Method 3 (hybrid)  Model structure 

Initial-F 0.315485 (Initial value) only 
Kinkai shallow (F4) 

Estimated 
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Table 2. Descriptions of the fisheries included in the models for the North Pacific blue shark stock 
assessment. 

Fishery 
number 

Reference Code Fishing 
Countries 

Gear Types Units Source 

F1 MEX Mexico Mexican Pacific 
longline 

Biomass Sosa-Nishizak and  
Castillo-Geniz (2016) 

F2 CAN Canada Troll, gillnet, seine 
fishery, foreign and 
joint-venture 
fisheries 

Biomass King and Surry (2016) 

F3 CHINA China  Biomass  

F4 JPN_KK_SH Japan Offshore shallow-
set longline  

Biomass Kai (2016); Hiraoka et 
al.(2013) 

F5 JPN_KK_DP Japan Offshore deep-set 
longline 

Biomass Kai (2016); Hiraoka et 
al.(2013) 

F6 JPN_ENY_SHL Japan Distant water 
shallow-set 
longline  

Biomass Kai (2016); Hiraoka et 
al.(2013) 

F7 PN_ENY_DP Japan Distant water 
deep-set longline 

Biomass Kai (2016); Hiraoka et 
al.(2013) 

F8 JPN_LG_MESH Japan High-sea large‐
mesh driftnet 

Biomass Yokawa et al. (2012) 

F9 JPN_CST_Oth Japan Coastal longline Biomass Kai and Yano (2016); 
Kimoto et al. (2011) 

F10 JPN_SM_MESH Japan Coastal driftnet Biomass Kai and Yano (2016) 

F11 IATTC RFMO Offshore longline, 
coastal longline, 
gillnet, harpoon, 
and others 

Biomass Alexandre Da Silva 
pers. comm., Nov 29, 
2016 

F12 KOREA Korea Tuna longline, 
observer data 

Biomass Kim et al. (2016) 

F13 NON_ISC Various 
flags 

Longline Biomass  

F14 USA_GILL USA 
(American 
Samoa) 

Gill net Biomass  

F15 USA_SPORT USA 
(American 
Samoa) 

Recreational fishing Biomass  

F16 USA_Longline USA 
(Hawaii) 

Longline Biomass Carvalho, F. (2016) 
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F17 TAIW_LG Taiwan Large-scale longline Biomass Liu et al. (2016) 

F18 TAIW_SM Taiwan Small-scale longline Biomass Liu et al. (2016) 
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Table 3. Fishery‐specific selectivity assumptions used in the structures used in the North Pacific blue 
shark stock assessment. The selectivity curves for fisheries lacking length composition data were 
assumed to be the same as (i.e., mirror gear) a closely related fisheries or to a fisheries operating in the 
same area. 

    
Fishery reference Reference Code Selectivity assumption Mirror gear 

F1 MEX Double-normal Estimated 

F2 CAN Double-normal F1 

F3 CHINA Double-normal Estimated 

F4 JPN_KK_SH Double-normal Estimated 

F5 JPN_KK_DP Double-normal Estimated 

F6 JPN_ENY_SHL Double-normal F4 

F7 PN_ENY_DP Double-normal F5 

F8 JPN_LG_MESH Double-normal Estimated 

F9 JPN_CST_Oth Double-normal F7 

F10 JPN_SM_MESH Double-normal Estimated 

F11 IATTC Double-normal F1 

F12 KOREA Double-normal F3 

F13 NON_ISC Double-normal F3 

F14 USA_GILL Double-normal Estimated 

F15 USA_SPORT Double-normal F14 

F16 USA_Longline Double-normal Estimated 

F17 TAIW_LG Double-normal Estimated 
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F18 TAIW_SM Double-normal F17 

S1 HW_DP Double-normal F16 

S2 HW_SH Double-normal F16 

S3 TAIW_LG Double-normal F17 

S4 TAIW_SM Double-normal F18 

S5 JPN_EARLY Double-normal F4 

S6 JPN_LATE Double-normal F5 

S7 JPN_RTV Double-normal F16 

S8 SPC_OBS Double-normal F13 

S9 SPC_OBS_TROPIC Double-normal F13 

S10 Mex_LG Double-normal Estimated 
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Table 4. Input CV, root‐mean‐square‐errors (RMSE), and standard deviations of the normalized residuals 
(SDNR) for the relative abundance indices used in the North Pacific blue shark stock assessment. 
S1_HW_DP, S3_TAIW_LG, S9_SPC, S10_MEX were not included in the total likelihood.  

Model run: 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.467 and Beta=1 

Reference code n Input CV RMSE SDNR 𝝌𝝌𝟐𝟐 
S1_HW_DP 16 0.28 0.46 1.69 1.29 
S3_TAIW_LG 12 0.10 0.67 6.91 1.33 
S5_JPN_EARLY 18 0.10 0.08 0.95 1.27 
S6_JPN_LATE 22 0.10 0.09 0.98 1.24 

S9_SPC 17 0.14 0.39 2.70 1.28 

S10_MEX 10 0.12 0.24 2.18 1.37 
 

Model run: 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.391 and Beta=2 

Reference code n Input CV RMSE SDNR 𝝌𝝌𝟐𝟐 
S1_HW_DP 16 0.28 0.46 1.69 1.29 
S3_TAIW_LG 12 0.10 0.67 7.01 1.33 
S5_JPN_EARLY 18 0.10 0.08 0.89 1.27 
S6_JPN_LATE 22 0.10 0.09 0.99 1.24 

S9_SPC 17 0.14 0.39 2.85 1.28 

S10_MEX 10 0.12 0.24 2.15 1.37 
 

Model run: 𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.378 and Beta=3 

Reference code n Input CV RMSE SDNR 𝝌𝝌𝟐𝟐 
S1_HW_DP 16 0.28 0.46 1.69 1.29 
S3_TAIW_LG 12 0.10 0.67 6.99 1.33 
S5_JPN_EARLY 18 0.10 0.08 0.90 1.27 
S6_JPN_LATE 22 0.10 0.09 0.99 1.24 

S9_SPC 17 0.14 0.39 2.86 1.28 

S10_MEX 10 0.12 0.24 2.12 1.37 
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Table 5. Relative negative log‐likelihoods of abundance index data components for the model run using 
a combination of Beta = 2 and Sfrac = 0.391 in the LFSR over a range of fixed levels of virgin recruitment 
in log‐scale (log(R0)). Likelihoods are relative to the minimum negative log‐likelihood for each respective 
data component. Colors indicate relative likelihood (red: high negative log‐likelihood; green: low 
negative log‐likelihood). S1_HW-DP, S3_TAIW_LG, S9_SPC, and S10_MEX were not included in the total 
likelihood. 

 

 

 

 

 

 

 

  

 

 

 

 

R0 S1_HW_DP S3_TAIW_LG S5_JPN_EARLY S6_JPN_LATE S9_SPC S10_MEX 

10.8 3.192665 20 135.979 46.06176 6.0495 0.653301 

10.9 2.156205 11.0447 89.681 27.5769 5.3626 1.478125 

11 1.343675 7.7786 44.269 14.1025 4.183 2.505805 

11.1 1.346335 4.4135 20.935 7.2711 0.867 1.435678 

11.2 1.217195 1.1 4.026 1.164 0.7812 1.289124 

11.3 1.186075 0.72 0 0 0.4507 0.807215 

11.4 0.942685 0.0021 6.804 3.6564 0.2557 0.511986 

11.5 0.664265 0 14.969 6.5903 0.1344 0.316444 

11.6 0.41626 1.0491 27.604 11.5687 0.0586 0.173947 

11.7 0.195376 5.312 37.161 22.7597 0.0161 0.072241 

11.8 0 7.6273 45 34.0496 0 0 
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Table 6. Relative negative log‐likelihoods of length composition data components for the model run 
using a combination of Beta = 2 and Sfrac = 0.391 in the LFSR over a range of fixed levels of virgin 
recruitment in log‐scale (log(R0)). Likelihoods are relative to the minimum negative log‐likelihood for 
each respective data component. Colors indicate relative likelihood (red: high negative log‐likelihood; 
green: low negative log‐likelihood).  

 

   

JPN JPN JPN JPN USA  USA  

 R0 MEX CHINA KK_SH KK_DP ENY_DP LG_MESH GILL Longline TAIW_LG 

10.8 0.592059 3.708873 25.21644 2.605106 19.83565 0.281332 8.612634 3.708873 0.25496 

10.9 0.399855 2.04817 16.63077 2.309306 11.87549 0.636527 4.756198 2.04817 0.17219 

11 0.249176 1.442492 8.209405 1.801332 6.072983 1.079079 3.349712 1.442492 0.107303 

11.1 0.249669 0.818456 3.882263 0.373358 3.131166 0.618248 1.900593 0.818456 0.107516 

11.2 0.225721 0.203988 0.746596 0.336409 0.501255 0.555138 0.473695 0.203988 0.097203 

11.3 0.21995 0.133519 0 0.194086 0 0.347612 0.310055 0.133519 0.094717 

11.4 0.174815 0.000389 1.261759 0.110113 1.574562 0.220477 0.000904 0.000389 0.075281 

11.5 0.123184 0 2.775906 0.057877 2.837992 0.136271 0 0 0.053047 

11.6 0.077193 0.194549 5.118987 0.025235 4.981849 0.074907 0.451776 0.194549 0.033242 

11.7 0.036231 0.985077 6.891272 0.006933 9.801048 0.031109 2.287516 0.985077 0.015602 

11.8 0 1.414434 8.344965 0 14.66284 0 3.284557 1.414434 0 
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Table 7. Estimates of key management quantities for the North Pacific blue shark stock assessment, 
under three different low fecundity stock recruitment relationships.  

                                    Model 
 Beta = 1 

Sfrac = 0.467 
Beta = 2 

Sfrac = 0.391 
Beta = 3 

Sfrac = 0.378 
SSB1971 363,704 311,312 285,130 
SSB2015 287,792 308,286 311,444 
SSBMSY 196,649 179,539 174,563 
F1971 0.119 0.137 0.147 
F2015 0.109 0.090 0.098 
FMSY 0.443 0.355 0.329 
SSB2015/ SSBMSY 1.463 1.717 1.784 
F2015/ FMSY 0.246 0.253 0.297 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

1 Figures 

 

Figure 1. Temporal coverage for data included in the stock assessment of blue shark in the North Pacific 
Ocean. 

  

 

 

 

 



32 
 

 

Figure 2. Assumed catches for blue shark in the North Pacific Ocean.  
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Figure 3. Yearly changes in standardized Japanese offshore shallow-set longline CPUE of North Pacific 
blue shark 1971-1993 (JPE) and 1994-2015 (JPL), and five standardized CPUEs (Hawaii deep-set longline: 
HWI, Mexico longline: MEX, SPC observed longline: SPC, Taiwan large-scale longline: TWN). 
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Figure 4. Examples of Pre‐recruitment survival for the Low Fecundity Spawner Recruitment (LFSR) 
implemented in Stock Synthesis (for details see page 59 of Stock Synthesis User Manual 3.24S). 
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Figure 5. Illustration of the parameterizations of the stock recruitment relationships using the Beverton-
Holt model for the sensitivity run (top left) and the LFSR  
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Figure 6. Model fits to the standardized catch‐per‐unit‐effort (CPUE) (in log scale) data sets from 
different fisheries for the model run using a combination of Beta = 1 and Sfrac = 0.467 in the LFSR. The 
solid red line is the model predicted value and the solid circles are observed data values. Vertical blue 
lines represent the estimated confidence intervals (± 1.96 standard deviations) around the CPUE values. 
S1_HW_DP, S3_TAIW_LG, S9_SPC, S10_MEX were not included in the total likelihood. 
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Figure 7. Model fits to the standardized catch‐per‐unit‐effort (CPUE) (in log scale) data sets from 
different fisheries for the model run using a combination of Beta = 2 and Sfrac = 0.391 in the LFSR. The 
solid red line is the model predicted value and the solid circles are observed data values. Vertical blue 
lines represent the estimated confidence intervals (± 1.96 standard deviations) around the CPUE values. 
S1_HW_DP, S3_TAIW_LG, S9_SPC, S10_MEX were not included in the total likelihood. 
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Figure 8. Model fits to the standardized catch‐per‐unit‐effort (CPUE) (in log scale) data sets from 
different fisheries for the model run using a combination of Beta = 3 and Sfrac = 0.378 in the LFSR. The 
solid red line is the model predicted value and the solid circles are observed data values. Vertical blue 
lines represent the estimated confidence intervals (± 1.96 standard deviations) around the CPUE values. 
S1_HW_DP, S3_TAIW_LG, S9_SPC, S10_MEX were not included in the total likelihood. 

 

 

 

 

 

1970 1980 1990 2000 2010

-1.0

-0.5

0.0

0.5

1.0

S1_HW_DP

 

1970 1980 1990 2000 2010

-1.5

-1.0

-0.5

0.0

0.5

S3_TAIW_LG

 

1970 1980 1990 2000 2010

-0.6

-0.4

-0.2

0.0

0.2

0.4

S5_JPN_EARLY

 

1970 1980 1990 2000 2010

-0.4

-0.2

0.0

0.2

0.4
S6_JPN_LATE

 

1970 1980 1990 2000 2010

-1.0

-0.5

0.0

0.5

S9_SPC

 

1970 1980 1990 2000 2010

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
S10__MEX

 



39 
 

 

Figure 9. Model fit (black solid lines) to mean PCL (in cm) of the composition data using a combination of 
Beta = 1 and Sfrac = 0.467 in the LFSR. The solid circles are the observed mean length and the vertical 
black solid lines are 95% credible limits around mean length. All measurements were in pre-caudal 
length (PCL, cm). 
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Figure 10. Model fit (black solid lines) to mean PCL (in cm) of the composition data using a combination 
of Beta = 2 and Sfrac = 0.391 in the LFSR. The solid circles are the observed mean length and the vertical 
black solid lines are 95% credible limits around mean length. All measurements were in pre-caudal 
length (PCL, cm). 

 

 



41 
 

 

 

Figure 11. Model fit (black solid lines) to mean PCL (in cm) of the composition data using a combination 
of Beta = 3 and Sfrac = 0.378 in the LFSR. The solid circles are the observed mean length and the vertical 
black solid lines are 95% credible limits around mean length. All measurements were in pre-caudal 
length (PCL, cm). 

 

 



42 
 

 
Figure 12. Sex specific comparison of observed (gray shaded area) and model predicted (blue and red 
solid lines) length compositions for different fisheries in the stock assessment model using Beta = 1 and 
Sfrac = 0.467 in the LFSR. 
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Figure 13. Sex specific comparison of observed (gray shaded area) and model predicted (blue and red 
solid line) length compositions for different fisheries in the stock assessment model using Beta = 2 and 
Sfrac = 0.391 in the LFSR. 
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Figure 14. Sex specific comparison of observed (gray shaded area) and model predicted (blue and red 
solid line) length compositions for different fisheries in the stock assessment model using Beta = 3 and 
Sfrac = 0.378 in the LFSR. 
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Figure 15. Profiles of the relative‐negative log likelihoods by different data components for the virgin 
recruitment in log‐scale (log(R0)) for the stock assessment model using Beta = 2 and Sfrac = 0.391 in the 
LFSR. 
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Figure 16. Comparison of time series of SSB in mt for North Pacific blue shark for different low fecundity 
stock recruitment relationships. Red solid lines indicate the estimates of MSY, and blue shaded area the 
95%CI. 
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Figure 17. Comparison of time series of recruits (age-1 fish) for North Pacific blue shark for different low 
fecundity stock recruitment relationships.  
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Figure 18. Comparison of time series of fishing mortality for North Pacific blue shark for different low 
fecundity stock recruitment relationships. Red solid lines indicate the estimates of MSY. 
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Figure 19. Kobe plot of the trends in estimates of relative fishing mortality and spawning stock biomass 
of North Pacific blue shark between 1971‐2015 for different low fecundity stock recruitment 
relationships. 
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Figure 20. Age-Structured  Production Model diagnostic (ASPM)  
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Figure 21. Results of sensitivity run with a Beverton-Holt stock recruitment relationship. Time series of 
spawning biomass in mt for North Pacific blue shark. Red solid lines indicate the estimates of MSY, and 
blue shaded area the 95%CI (left panel). Kobe plot of the trends in estimates of relative fishing mortality 
and spawning biomass of North Pacific blue shark between 1971‐2015 (right panel). 
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