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1 Introduction 

The last full stock assessment for Pacific bluefin tuna (hereafter PBF) was 

carried out in February 2020 (ISC PBFWG, 2020), and the fishery data from 

2017 to 2021 were updated in the 2022 stock assessment (ISC PBFWG, 2022). 
In both assessments, the WG recognized and listed several issues on those assessment reports 

as unsolved future issues. From the 2022 assessment onwards, the PBFWG reviewed their 

past assessments and summarized possible areas to improve the assessment model for the 

benchmark assessment scheduled in 2024. In keeping with above mentioned reviews and 

studies in the intersessional meetings, this document proposes; 1.) use of the short-term 

model; 2.) a minor modification to the 2022 short-term model; 3.) fitting to the newly 

available size composition data; 4.) reducing the residuals for the size composition data; 5.) 

improving the retrospective diagnostics; 6) fitting to the newly available index of abundance.  

In this document, we started from the 2022 PBF stock assessment short-term model 

using the Stock Synthesis (SS) version 3.30.14.08 (Methot & Wetzel, 2013; Fukuda., 2021) 

to explore the possible model improvements with the order of the above-mentioned proposals. 

 

2 Model and Data 

2.1 Basic model configuration 

The model assumes a single well-mixed stock for PBF and does not consider 

a spatially explicated structure. All the catch and size composition data are temporally 

stratified into the following 4 quarters of July-September, October-December, 

January-March, and April-June. Those quarters (Jul-Sept, Oct-Dec, Jan-Mar, and Apr-

Jun) are assigned to 1st, 2nd, 3rd, and 4th seasons, respectively as the fishing year of 

PBF. The time period modeled in this assessment is 1952-2022 including the updated 

recent two years.  
 

2.2 Data 

The data for this model are based on the 2022 stock assessment and updated 

data submitted by the WG members. It should be noted that some data submitted after 

January 2024 were not reflected in this document because of the time constraint for 

the model explorations. The data submitted after January will be included in the model 

at the assessment meeting. The detailed information of those input data (the catch, 

discard, abundance index, and size composition) is described in Nishikawa et al. 

(2024). It also should be noted that the numbering of the fishery and abundance index 

(e.g. Fleet and Survey) were re-ordered to fix the inconsistent order of fishery 

definition, which has been changed in ad-hoc manner during the past assessments, into 

a simple sequence by fishery type and member. 
 

3 Model Exploration 

3.1 Short-term PBF assessment model 
The 2022 PBF base case modeled data during 1952-2020 fishing year. 

Although it did not show any evidence of further improvements on the model 

convergence, it showed inflexibility to the changes of the productivity assumptions 

(e.g. lower steepness). The current base case allows for model convergence at slightly 

lower level of steepness only (h=0.99). Since the reason for this convergence issue 

might be that the population is observed at a very low relative stock size, and the model 

is fine-tuned to explain data under the current assumption, Fukuda (2021) re-

constructed the PBF SS model without very high consecutive catches observed in 

1981-1982 by starting the model from 1983 (short-term model). The model 

performance was evaluated by the residual analysis and model convergence for several 

alternative assumptions about the steepness and natural mortality. The biomass time 
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series such as the SSB and recruitment estimated by the short-term model were 

basically identical with those from the long-term model. In that study, the short-term 

model brought some advantages such as higher flexibility to the alternative 

assumptions about the steepness, shorter run time, and keeping its high model 

performance in terms of the model fits to the data (Fukuda 2021).  

The short-term model was utilized in the 2022 assessment only for the 

sensitivity analysis to the alternative assumptions about the productivity but for the 

assessment base case because 2022 assessment was the data update assessment. Since 

2024 assessment is the bench-mark assessment, this could be a time to discuss 

changing the assessment time period. It should be noted that some of the empirical 

quantities used for the PBF management (e.g. historical median) could be brought 

from the 2022 base case in a form of relative value over the unfished biomass (%SSB0). 

The fishery impact (Wang et al., 2009), which was another metrics often mentioned 

during the discussion of the IATTC-WCPFC NC joint working group on PBF 

management, in historic period also could be brought from a previous estimate as a 

relative fishery impact ratio in each fishery group or could be estimate using an 

updated long-term model.  

The authors recommend to use the short-term model in the 2024 assessment 

while maintaining the long-term model as one of the sensitivity analyses.  
 

3.2 A minor modification to the 2022 short-term model 
  The observed length compositions for the Japanese longline fishery in fishing 

season 1 (Fleet 1) indicated a steep decrease in selection and a high uncertainty in 

parameter estimation in terms of the standard deviation (S.D.). Given the parametric 

length-based selectivity currently used, parameters associated with the descending 

limb of dome-shaped selectivity have little information on their values because 

selectivity is changing rapidly within a couple of size bins. The working group in 

November 2023 explored alternative data structure (e.g., smaller size bin), alternative 

selectivity shape (e.g., estimating the end selectivity of the 6-parameter double 

normal), and alternative time-block (e.g. eliminating the time-block from Fleet 1) to 

resolve this issue. Although a smaller length bin did not contribute to improve the 

parameter uncertainty, estimation of the end parameter of the double normal and time-

block elimination resulted in a lower S.D. than that of the 2022 short-term model (Asai 

et al., 2023). Since the time block-block for Fleet 1 in the short-term model, which 

was a remnant of the long-term model, was a mis-specified time-block when any size 

data was not available (1983-1992), this needs to be eliminated. Estimation of the end-

parameter of the double normal selectivity for Fleet 1 needs to be confirmed whether 

that parameter hit to its boundary during the stock assessment meeting using the 

finalized data set.   
 

3.3 Fitting to Newly available size composition data 

The size composition for the Japanese tuna purse seine operating in the Sea of 

Japan (JTPS_SOJ; Fleet 6) has been obtained by the port sampling (Fukuda et al., 

2012). A part of this fleet initiated the farming operation in early 2010’s, and it has 

been increased a proportion of the farming operation in recent year. Nishikawa et al. 

(2023) estimated and submitted the size composition for the farming operation of 

JTPS_SOJ (assigned as Fleet 7). The composition for the farming operation was 

mainly occupied by the same age-class with the Fleet 6 except age-3, which was not 

shown up in the farming operation. Nishikawa et al. (2023) also tested how to model 

this new fleet in the PBF assessment model, and they suggested two methods to 

estimate the length selectivity of this fleet. The first one was an independent estimation 
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of the length-based time invariant selectivity and the age-based time varying 

selectivity for the farming operation fleet. The other one was a sharing selectivity with 

the Fleet 6 (TPS-SOJ), which assumed the length-based time invariant asymptotic 

selectivity and the age-based time varying selectivity for ages from 3 to 7, with fitting 

to the size composition data of the farming operation.  

  Although the former (independent estimates) showed slightly smaller residuals than 

the later one (sharing selectivity), it required 40 parameters to estimate more than the 

sharing selectivity method. Because the sharing selectivity method also could replicate 

both size composition data of Fleets 6 and 7 (market landing and farming), the authors 

recommend applying the sharing selectivity method.  

 

3.4 Improve the residuals for the size composition 
  Fukuda (2023) conducted comprehensive retrospective analysis to identify the 

cause of the systematic retrospective error in the 2022 base case model. It compared 

the retrospective analysis for ASPM-Rfix type models with a size composition from 

each fleet one by one. It was indicated that the residuals for size composition data from 

Fleet 2 (Japanese longline in fishing season 1-3) and Fleet 5 (Japanese Tuna purse 

seine in the Pacific Ocean side) lead a part of the systematic retrospective pattern. A 

model which down-weighted size composition data for those fleets showed somewhat 

smaller degree of the retrospective pattern (ISC, 2023). In here, some examples to 

reduce the residuals for the size composition data of Fleet 2 and 5 were provided.  
3.4.1 Japanese Longline in fishing season 1-3 (Fleet 2) 

Fleet 2 (Japanese LL season 1-3) is a longline fishery fleet, which was not 

related to the JLL abundance index (S1), operated outside the main fishing season 

(fishing season 4). The separation of the catch and size composition data for JLL 

in season 1-3 logically sounds since there might be a seasonal difference in the 

selectivity and/or availability for this fishery. The average catch amount for Fleet 

2 had been quite small (< 200 tons/year) until 2019, and the average input sample 

size for size composition data was also small (c.a. 3.8/year) accordingly. 

The size composition data of Fleet 2 showed a multi-modal distribution with 

several spikes at the fish length of smaller than 150 cm. Although this kind of 

distribution was usually difficult to be replicated by a simple functional form of 

the selectivity, a time-invariant length based double normal selectivity was 

assumed for Fleet 2 because of the small amount of catch and input sample size. 

To replicate this kind of multi-modal distribution, a flexible form of the 

selectivity (e.g. time varying non-parametric age specific selectivity) was 

necessary, but it also needs a large number of parameters to estimate (more than 

5 parameters in each year).  

Given the small amount of catch observed for this fleet, the authors proposed 

to eliminate most of those spiky composition data. For this, the catch and size 

composition data by JLL for the fishing season 4 during FY2017-2022 when the 

large amount of small PBF were observed in the size composition data, were 

moved back to Fleet 1. The observation in the composition data at 152 cm bin 

and smaller bins were eliminated before 2020 to maintain the consistency 

between the size composition data and the data filtering process for the JLL 

abundance index (Survey 1). Two selectivity time blocks in 2020 FY and a period 

between 2021 and 2022 were specified for the Fleet 1 to separate the selectivity 

during the CPUE associated period (1983-2019) and later period (fishery period). 

The selectivity of JLL in the fishing season 1 to 3 (Fleet 2) for the period when 

the catch amounts were remained small (1983-2020 FY) could be assumed as the 

time invariant selectivity, which was estimated based on the composition data of 



 

5 

 

one of the typical year (i.e. 2020). The difference between the 2022 assessment 

and this proposal was summarized in Table 1.  

 
Table 1. Catch, Size composition and time block for the selectivity of Fleet 1 and Fleet 2 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Aggregated size composition data for Fleet 2 (upper panels) and residual plots (lower 

panels) from the simple update model (left) and the modified model (right).  

Simple update Modified model

Catch 1983-2016 (S4) 1983-2022 (S4)

Size 1993-2016 (S4) 1993-2022 (S4)

Time block No
2020-2020

2021-2022

Simple update Modified model

Time block No
2021-2022

1983-2022 (S1-3)

Size
1993-2022 (S3)

2017-2022 (S4)

F2JPN_LL(S1-3)

F1JPN_LL(S4)

2020-2022 (S3)

1983-2022 (S1-3)

2017-2022 (S4)
Catch
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3.4.2 Japanese Tuna Purse seine operating in the Pacific side (Fleet 5) 
As shown in Fukuda et al. (2019), there was a big shift of selectivity for this 

Fleet 5 from “small & large PBF fishery” to “only large PBF fishery” due to the 

management change. To reflect this phenomenon in the model, two time-blocks 

has been introduced as the age specific non-parametric selectivity at 2011, which 

was the initial year of the new management and after 2014 when larger PBF than 

previous years were observed in the data.  

Although this specification of the selectivity worked well in the 2020 

assessment, some obvious residuals were observed in recent year (e.g. 2019 and 

2021 fishing year). This indicated a possible change in the fishing practice and/or 

availability due to the migration of fish. A time invariant selectivity within the 

terminal time-block (from 2015 to 2022) could not allow the model to depict the 

observed length composition data. 

To reduce the residuals for this size composition data, we added two more 

time-blocks within the period of 2015-2022, namely 2015-2018, 2019-2019, and 

2020-2022. This flexibility in selectivity enabled the model to depict the recent 

size composition data more closely (Fig. 2). The authors recommend to have 

additional selectivity parameters for this fleet.  

 
Fig. 2  Mean size for Fleet 5 (Jpn tuna PS in PO) with 95% confidence intervals 

based on current sample sizes from the simple update model (left) and the 

modified model (right).  

 

3.5 Improving the retrospective diagnostics 
Since the 2020 PBF stock assessment, a small but persistent retrospective 

underestimation of terminal SSB in recent several years was recognized and it was 

carried to the current assessment (Fig. xx), which was simply updated from the most 

recent assessment conducted in 2022. This issue was also pointed out at the 18th 

meeting of the scientific committee of the Western and Central Pacific Fishery 

Commission (WCOFC SC18, 2022) as one of the uncertainties of the assessment. This 

error was likely indicated that the model could not anticipate the rapid recovery of the 

SSB when the observations are peeled back from the terminal year. The recovery of 

the SSB was basically informed by two consistent standardized abundance indices 

based on the catch per unit effort (CPUE) of longline fleets from two different fishing 

nations. And the recovery trend was also observed in the result using very simple stock 

assessment model (e.g. age structured production model (ASPM)) that fitted to the 

catch alone.  
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Fukuda (2023) conducted comprehensive retrospective diagnostics using the 

PBF dynamics model based on a simple ASPM-R with alternative assumptions for the 

data (adult index, recruitment index, and composition data by fleet) and productivity 

(steepness, natural mortality, recruitment). This analysis suggested that the input data, 

in particular Japanese troll recruitment index (S3) in recent year and the residuals for 

the Fleet 2 and 5 (as mentioned in the above sub-section), were possible contributing 

factors.  

In this study, a simply updated model without the recruitment index after 2010 

as well as that after 2013 were diagnosed (Fig. 3b &3c). The results suggested that 

both of the models eliminating the recent recruitment index contributed to improve the 

systematic error, although the model without that index after 2013 showed clearer 

negative error than that of the model without the index after 2010. The Mohn’s rho 

values for those two models were almost identical (c.a. -0.08). It should be noted that 

the all the models tested in this sub-section showed a lower Mohn’s rho values (in 

absolute value) than 0.2, which is a criteria commonly used (Mohn, 1999). A smaller 

Mohn’s rho value in a simple updated model (figure 3a) than the 2022 assessment base 

case model does not mean the improvement of the assessment model but just because 

of a rapid recovery of the SSB in recent year, and it made a relative retrospective error 

over the overall biomass change in the full-data model smaller.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  SSB calculated for each peeled model for (a) the simple update model, (b) 

simple update model without Jpn troll index after 2011; (c) simple update model 

without Jpn troll index after 2013; and (d) simple update model without Jpn troll 

index after 2010 and reduced residuals for Fleet 1, 2, 5.       

  

(a) (b) 

(c) (d) 
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I also diagnosed the model eliminating the recruitment index after 2010 with 

additional change in the size composition data and selectivity pattern written in the 

sub-sections 3.4.1 and 3.4.2 (Fig. 3d). Main contributing factors for a systematic 

negative retrospective pattern were somehow fixed in this model, and the model 

showed most consistent SSB estimates among those 4 models (Mohn’s rho = c.a. -

0.02). As a conclusion of this sub-section, the authors recommend to exclude recent 

recruitment index data points (e.g. 2011-2016) for the sake of the internal consistency 

of the model. 
 

3.6 Fitting to newly available index of abundance 
3.6.1 Taiwanese longline CPUE based index 

In the current assessment model, Taiwanese longline (TLL) CPUE based 

index is a single index of abundance, which was maintained its continuity up to 

the terminal year (e.g. 2022 fishing year). TLL index currently used was 

standardized using a delta-generalized linear mix model (delta-GLMM) without 

consideration of the spatial effect (Chang et al., 2020). This was a traditional 

method and the PBFWG chose this method to prioritize the length of time series, 

where a CPUE standardized by the vector auto regressive spatiotemporal model 

(VAST) which considered spatial effect, was also available. 

Additionally, (Yuan et al., 2023) further improved CPUE standardization 

method using the VAST model incorporating SST and age group data. Although 

this new method has a shorter time series than the traditional GLMM index due 

to the data availability, it has an advantage which incorporated the spatial and 

size effect on the catchability of PBF. Given the recent situation of TLL fleet, 

whose operation dynamics might have changed, this new method may have an 

advantage.  

Fukuda and Chang (2023) then, compared the performance of the candidate 

TLL indices in the 2022 assessment model, and they found that the age 6-8 

specific TLL index standardized by VAST with age and SST data showed a high 

consistency with the Japanese longline (S1) index of abundance, which was 

another longline CPUE based index of abundance.  

Given a short-time series of the age-specific VAST CPUE, the same tests were 

performed for all the TLL indices submitted by Yuan et al. (2024) (Table 2) with 

additionally updated two years data. The method to compare the performance 

within the PBF population model was same with the Fukuda and Chang (2023). 

We used ASPM-Rfix whose recruitment deviation and size selectivity were 

specified at the values estimated by the same preparation run without any TLL 

index (Lee et al., 2020). Then, ASPM-Rfix was re-run with a candidate TLL index 

one by one. The fully integrated assessment models with alternative TLL index 

were also compared.  

ASPM-Rfix Models 18, 19, and 22, which were fitted to the TLL spatial index 

for age 6-8 (S10), age 9-11 (S11), and age 18+ (S14), respectively, showed 

relatively low RMSE values for JLL index (S1) (Table 2). Those results indicated 

that those TLL indices might bring more consistent information about the 

population scale with that of the JLL index. However, the RMSE value for those 

candidate TLL indices themselves by each ASPMR_fix was generally high 

(RMSE ≥ 0.4). This might suggest a possible inconsistency of those age specific 

indices with the estimated CAA and recruitment deviations based on the other 

data sources in the PBF assessment model.  

On the other hand, the TLL south GLMM index (S5) could be replicated well 

in both of the fully integrated model and the ASPM_Rfix (models 2 and 13). It was 
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not quite sure whether this indicates a good consistency between the TLL S5 

index and other data sources in the model, but its notable that the ASPM_Rfix with 

S5 also showed a fairly good fit to the JLL S1 index (RMSE =0.27).  

From those results, the authors suggested two TLL indices as a candidate for 

the base case index. One is the traditional TLL index which showed a fair 

consistency with the JLL index while being replicated well by the ASPM_Rfix 

and fully integrated models. The other one was the TLL age 6-8 index 

standardized by the VAST (S10) model using length data and SST. This index 

continuously showed a good consistency with the JLL index by ASPM-Rfix 

diagnostics although there was an obvious misfit for the S10 index itself.  

 
3.6.2 Japanese Recruitment Monitoring Survey index  

As shown in this study (section 3.5) as well as the Fukuda (2023), Japanese 

troll CPUE based abundance index in recent year caused a systematic 

retrospective pattern. If the WG decided to eliminate the troll CPUE based index 

for some recent years, then, how to deal with the alternative recruitment index 

would be subject to decide.  

  Table 3 showed a comparison of the two data structure (use of the recruitment 

monitoring index or not) by three model structures (Fully integrated model, 

ASPM-Rfix, and ASPM-Rest). In ASPM-Rfix, the model 4 (w/ recruitment 

monitoring index after 2010) showed a better fit to the S1 index in terms of the 

RMSE value. ASPM-Rfix with the recruitment monitoring index (Model 4) 

showed slightly better fit to the JLL index in the last 2 years. This indicated that 

the recruitment information brought by the S4 index was consistent with the JLL 

S1 index (Fig. x). It was also notable that the Model 4 (ASPM-Rfix w/ monitoring 

index) showed a better data-matching with the S10 (TLL age 6-8 index). Since 

the S10 index is the abundance index of the youngest adult fish continuing until 

the terminal year, this index would theoretically have information about 2016 

recruitment year class in youngest. A lower RMSE value in ASPM-Rfix w/ the 

recruitment monitoring index would be a sign of consistency between the 

recruitment information derived by the recruitment monitoring index and those 

brought by the TLL age 6-8 index, and this relationship would validate the 

reliability of recruitment monitoring index during 2011-2016 data points.  

  Although it was difficult to validate the monitoring index for most recent year 

(if we had that information in our assessment data, we will not search an 

alternative recruitment index), a lower size likelihood after 2010 in the ASPM-

Rest with recruitment monitoring index (model 6) than that without monitoring 

index (model 5) might suggested the consistency between the recruitment 

monitoring index and size composition data for young cohorts in a recent year.   

From those results, now there is a choice for the PBFWG about the Recruitment 

monitoring index;  
1). Continuing not to use the recruitment monitoring index; 
2). Use recruitment monitoring index during 2011-2022;  
3). Use recruitment monitoring index during 2011-2016 (use a part of the 

index which was validated through the analysis); 
4). Use recruitment monitoring index during 2018-2022 (use a part of the 

index with avoiding a low data coverage period (Fujioka et al., 2023). 

 

The authors recommended to use the monitoring index for entire period or 

during 2018-2022 (case 2 or 4).
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Table 2 Model structure, index fitted in the model, model parameter setting, and root-mean-square-error (RMSE) for the short-term model 

with alternative of the Taiwanese longline CPUE based abundance index. Shaded cell indicated that that index was not included in the 

likelihood function of the model.  

  

Model No TLL index tested selex Rdev JLL index Jtroll indexS1JPN_LL S2 S3_Troll S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

1 NoTLL estimated estimated 0.255 0.140 0.174 0.606 0.401 0.445 0.607 0.574 0.617 0.554 0.859 0.921 0.877 0.424

2 S5TWLL_GLMM_South estimated estimated 0.290 0.137 0.170 0.589 0.235 0.292 0.424 0.374 0.417 0.537 0.700 0.616 0.542 0.403

3 S6TWLL_GLMM_Whole estimated estimated 0.298 0.137 0.170 0.587 0.223 0.274 0.435 0.378 0.426 0.554 0.730 0.590 0.492 0.398

4 S7TWLL_GeoSt_South estimated estimated 0.290 0.138 0.171 0.577 0.295 0.365 0.286 0.281 0.279 0.422 0.553 0.650 0.658 0.516

5 S8TWLL_GeoSt_Whole estimated estimated 0.292 0.138 0.170 0.579 0.253 0.321 0.312 0.283 0.299 0.456 0.593 0.593 0.573 0.458

6 S9TWLL_GeoSt_All_age estimated estimated 0.287 0.139 0.171 0.578 0.278 0.349 0.298 0.284 0.288 0.435 0.568 0.643 0.643 0.496

7 S10TWLL_GeoSt_age6-8 estimated estimated 0.247 0.142 0.173 0.582 0.400 0.449 0.528 0.514 0.536 0.241 0.865 1.072 1.051 0.442

8 S11TWLL_GeoSt_age9-11 estimated estimated 0.293 0.139 0.179 0.584 0.343 0.415 0.376 0.376 0.370 0.543 0.247 0.872 1.074 0.479

9 S12TWLL_GeoSt_age12-14 estimated estimated 0.333 0.135 0.165 0.597 0.217 0.276 0.381 0.319 0.365 0.699 0.675 0.265 0.341 0.471

10 S13TWLL_GeoSt_age15-17 estimated estimated 0.308 0.137 0.170 0.605 0.236 0.285 0.459 0.400 0.455 0.720 0.830 0.460 0.195 0.488

11 S14TWLL_GeoSt_age18+ estimated estimated 0.274 0.138 0.167 0.593 0.358 0.402 0.558 0.522 0.570 0.538 0.840 0.817 0.766 0.285

ASPM-R_fix

Model No TLL index tested selex Rdev JLL index Jtroll indexS1JPN_LL S2 S3_Troll S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

12 NoTLL 0.233 0.149 0.170 0.605 0.448 0.490 0.645 0.615 0.654 0.535 0.879 0.982 0.960 0.490

13 S5TWLL_GLMM_South 0.270 0.134 0.172 0.607 0.382 0.422 0.615 0.574 0.627 0.607 0.861 0.845 0.770 0.390

14 S6TWLL_GLMM_Whole 0.275 0.133 0.171 0.607 0.379 0.416 0.622 0.578 0.636 0.633 0.867 0.815 0.727 0.382

15 S7TWLL_GeoSt_South 0.284 0.215 0.181 0.604 0.387 0.440 0.552 0.529 0.557 0.500 0.839 0.981 0.957 0.436

16 S8TWLL_GeoSt_Whole 0.271 0.170 0.178 0.605 0.389 0.438 0.579 0.549 0.587 0.529 0.847 0.944 0.907 0.421

17 S9TWLL_GeoSt_All_age 0.272 0.191 0.179 0.604 0.400 0.451 0.568 0.545 0.573 0.501 0.847 0.992 0.972 0.453

18 S10TWLL_GeoSt_age6-8 0.244 0.136 0.174 0.603 0.501 0.548 0.647 0.631 0.647 0.460 0.902 1.143 1.186 0.638

19 S11TWLL_GeoSt_age9-11 0.255 0.137 0.173 0.606 0.401 0.445 0.609 0.575 0.619 0.555 0.859 0.920 0.875 0.424

20 S12TWLL_GeoSt_age12-14 0.350 0.221 0.175 0.613 0.388 0.405 0.690 0.627 0.710 0.868 0.941 0.611 0.436 0.395

21 S13TWLL_GeoSt_age15-17 0.353 0.237 0.182 0.613 0.393 0.409 0.699 0.634 0.719 0.886 0.951 0.603 0.422 0.398

22 S14TWLL_GeoSt_age18+ 0.262 0.139 0.170 0.607 0.391 0.428 0.632 0.589 0.646 0.627 0.871 0.832 0.750 0.395

fixed at Model1's

values
fitted -

Fully integrated model Model setting RMSE

fitted

fitted

during

1983-

2010

Model setting RMSE
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Table 3 Model structure, index fitted in the model, model parameter setting, and root-mean-square-error (RMSE) for the short-term model 

with alternative of the recruitment monitoring index (S4). Shaded cell indicated that that index was not included in the likelihood function of 

the model.  

 

 

 

All_size_Likelihood

Model No Recruitment_index_tested selex Rdev Jtroll_index (S3)Rmoni(S4) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 _after_2010

1 Rind2010_No_Rmoni - 0.255 0.140 0.174 0.606 0.401 0.445 0.607 0.574 0.617 0.554 0.859 0.921 0.877 0.424 639.5

2 Rind2010_Rmoni_2011 2011- 0.255 0.138 0.174 0.302 0.379 0.425 0.569 0.538 0.577 0.487 0.830 0.912 0.870 0.416 646.5

Likelihood_2011-

Model No Recruitment_index_tested selex Rdev Jtroll_index (S3)Rmoni(S4) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 All_size

3 Rind2010_No_Rmoni Fixed(model 1) Fixed(model 1) 0.233 0.149 0.170 0.605 0.448 0.490 0.645 0.615 0.654 0.535 0.879 0.982 0.960 0.490 639.8

4 Rind2010_Rmoni_2011 Fixed(model 2) Fixed(model 2) 0.229 0.155 0.170 0.302 0.424 0.467 0.612 0.582 0.619 0.480 0.851 0.955 0.930 0.475 646.4

Likelihood_2011-

Model No Recruitment_index_tested selex Rdev Jtroll_index (S3)Rmoni(S4) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 All_size

5 Rind2010_No_Rmoni - 0.163 0.096 0.128 0.631 0.422 0.462 0.620 0.593 0.629 0.403 0.936 1.118 1.070 0.437 729.7

6 Rind2010_Rmoni_2011 2011- 0.167 0.097 0.125 0.151 0.422 0.463 0.614 0.588 0.621 0.447 0.910 1.130 1.086 0.439 719.3

ASPM-R_est Model setting

Fully integrated model Model setting RMSE

to 2010

ASPM-R_fix Model setting RMSE

RMSE

estimated estimated

estimatedFixed(model 1)

- -

to 2010
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4 General conclusion 
  This document summarized a discussion point for the 2024 benchmark assessment with 

some additional analysis to provide a rationale for decision make to change any assessment 

assumption. Although this document treated really wide range of the proposals to modify the 

assessment time period, newly available size data, the selectivity parameterization methods, 

and the abundance index used for the assessment, the estimated population scale was robust 

among all of tested models as well as the previous assessment because of the strong 

relationship between the catch and abundance index in the historical period. 

The slope of the recovery after 2011 might be different by the choice of the assumptions 

listed in this document, however, all of the tested runs showed a very rapid recovery of SSB.  

  It also should be noted that all of the model runs and diagnostics were conducted under 

the implicit assumption of “catch is relatively reliable than the other observations”.  
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