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Abstract 

Spatial patterns in the distribution of age-classes are often the result of movement. The data 
needed to include movement in stock assessment models typically do not exist, and modelers use areas-
as-fleets approach. In an attempt to better understand the effect of the age-based movement, this 
study used simulation methods and a factorial design with modeling movement, ignoring movement, 
modeling with substitute process, increasing observation error to reduce effect of un-modeled 
movement, and aggregated fleet structure. Two different states of nature governing the movement 
process are explored. Only the inclusion of the correct spatial structure along with estimation of 
movement rates produces unbiased and precise estimates of derived quantities, although some 
management quantities are less biased in non-spatially explicit models.  

 

Introduction 

Integrated models are the current state of the art for data-rich stock assessments. These models 
link diverse types of data via observation processes to underlying population dynamics which are 
controlled by system processes. Both system and observation processes are governed by parameters 
that can be estimated or specified. Estimation of parameters is done statistically using maximum 
penalized likelihood methods. The integrated approach allows for the use of many different types of 
data as long as the sampling processes linking the data to the population can be defined. Integrated 
models, in theory, allow for the estimation of system processes not directly informed by data. 

Misspecification of either the observation or systems processes can result in lack of fit and model 
bias. Considerable attention being paid to some observation model processes (e.g. selectivity, Maunder 
et al. 2014) and some system model processes (e.g. natural mortality, Brodziak et al. 2011; growth, 
Maunder et al. 2015). The method of treating other system model processes such as movement remains 
uncertain but important. Due to the linkage of all data via the dynamics, misspecification on one process 
can have adverse consequences for other seemingly unrelated data sets.  

Pacific bluefin tuna show a pattern of movement of age-1 fish from natal waters in the Western 
north Pacific Ocean (WPO) to feeding grounds in the productive Eastern Pacific Ocean (EPO). Return of 
juveniles to western Pacific waters appears to be related to maturation and pre-spawning. However, 
incorporation of this understanding into a spatially explicit integrated stock assessment model is difficult 
due to a lack of appropriate tagging studies. Movement is generally thought to be an age-based process, 
so ignoring or mis-specifying this process can impact selection (via availability) and mortality estimation. 
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Due to a lack of direct data on movement rates, the 2014 stock assessment of Pacific bluefin tuna 
assumed an instantaneously mixed population and incorporates regional selection patterns and 
catchability coefficients to account for spatial effects (areas-as-fleets). This study uses simulation 
methods to evaluate relative performance of different modelling approaches to deal with age-based 
movement for a Pacific bluefin tuna-like population. We conduct a series of simulation experiments 
using factorial design with modeling movement, ignoring movement, modeling with substitute process, 
increasing observation error to reduce effect of un-modeled movement, and aggregated fleet structure. 
We also explore two different states of nature governing the movement changes over time (annually 
random parameter value, or driven by cyclic environmental factor). The impact of the modelling 
approaches given the uncertainty of the states of nature on management quantities and derived 
quantities of interest are used to offer guidance on modeling choices.  

 

Materials and Methods 

1. Overview of study 

We simulated synthetic populations using spatially explicit stochastic population dynamics (two 
areas) to evaluate different modeling approaches to structure movement aspects. The methods are 
explained (Figure 1) starting with 1) the simulation of the PBF-like synthetic populations, 2) two different 
states of nature governing the movement process, 3) different modelling approaches to deal with age-
based movement tested, and 4) comparison of derived quantities of interest.   

2. Simulation of PBF-like population 

We used the commonly used stock assessment model, Stock Synthesis (Methot and Wetzle 2013) 
as simulation framework to create the 500 synthetic populations. Stock Synthesis is a widely used 
forward simulating integrated population dynamics model capable of fitting a wide variety of data types. 
The model keeps track of numbers at age by area and can transform the sampled age distribution into 
the equivalent length-at-age and overall length distribution. We used it to create synthetic populations 
based on stochastically generated parameters controlling the systematic and fishery processes 
governing the population dynamics (movement, recruitment, and exploitation histories). 

Our study was based on the 2014 Pacific bluefin tuna assessment. The bluefin assessment 
integrated various types of data (abundance indices and size compositions) consisting of 14 individual 
fleets: 3 fleets with observations of abundance indices, and 11 fleets with size compositions. Fleets 
without observations of the length compositions were assumed to share a selectivity pattern with a 
similar fleet.  

To evaluate the impact of modeling movement in simulations, a simplified version of the stock 
assessment model was developed as a basis of operating model (Table 1). The operating model 
maintained the key data components (abundance indices and size compositions), biological assumptions 
(growth, reproduction, natural mortality), and the model structure (quarterly) from the assessment. 
Taking these components into considerations, the model then 1) explicated the spatial movement with 
two areas (one WPO and one EPO); 2) reduced the fleet dimension to six: one WPO longline fleet 
represents adult fleet, one WPO troll & pole-line fleet represents age-0 fleet, three WPO surface fleets 
(small pelagic purse seine, tuna purse seine, and set net fisheries) represent age 1-5 fleets, and one EPO 
surface fleet represents age 1-3 fleet; and 3) fixed log unfished recruitment, initial fishing mortality, and 
selectivity patterns at the previous estimates from the assessment.   

DRAFT



- 3 - 
 

The key system process parameters (movement and recruitment) were generated at random 
from distributions described in Table 1. In order to avoid potential bias from patterns in the recruitment 
residuals from the assessment, recruitment deviates with the same variability as assumed in the 
assessment were randomly generated. Also, to reflect incomplete knowledge about movement, some 
aspects of movement were randomly generated.  Age-based movement rates from WPO area to EPO 
area were determined by fraction of fish out of WPO to EPO at their earliest age 1 and at their latest age 
𝐴𝐴max_WPO→EPO (Methot and Wetzel 2013), where WPO area is recruitment settlement and spawning 
area containing majority of age classes and EPO area is a feeding area containing mostly age 1-3 fish 
(Figure 2). 𝐴𝐴max_WPO→EPO was generated stochastically. The fraction of fish from WPO to EPO at age 1 
was assumed to vary over time with mean rate at 40%, whereas the fraction of fish from WPO to EPO at 
age 𝐴𝐴max_WPO→EPO was fixed at 0.1% to indicate nil fish move from WPO to EPO at 𝐴𝐴max_WPO→EPO. 
Movement rates between age 1 and age 𝐴𝐴max_WPO→EPO were linearly interpolated after logarithmic 
transformation. 

As for fish returning to spawning area, age-based movement rates from EPO area to WPO area 
were determined by fraction of fish out of EPO to WPO at their earliest age 1 and at their latest age 
𝐴𝐴max_EPO→WPO. 𝐴𝐴max_EPO→WPO was also generated stochastically. The fraction of fish from EPO to WPO 
at age 1 was fixed at 5% to reflect few fish move from EPO to WPO at age 1, whereas the fraction of fish 
from EPO to WPO at age 𝐴𝐴max_WPO→EPO was fixed at 99.9% to indicate no fish above age 𝐴𝐴max_WPO→EPO 
remain in the EPO area. Movement rates between age 1 and age 𝐴𝐴max_WPO→EPO were linearly 
interpolated after logarithmic transformation. 

Two different states of nature governing the movement time-varying process were considered 
(Figure 3). The force behind movement rates from WPO to EPO at age 1 over time could be random or 
environmentally driven. The former assumes that annual movement rates from WPO to EPO at age 1 is a 
random event within the uniform distribution from 10% to 70%. The latter assumes that annual 
movement rates from WPO to EPO at age 1 is a covariate with pan-Pacific decades-long climate 
variability (Pacific Decadal Oscillation, PDO; Latif and Barnett 1996; Hare 1996; Zhang 1996).  

The fleet component of the operating model included: 61 years of simulated population 
dynamics with fishing that started from non-equilibrium population as assessment, and 5 fleets from 
WPO and one fleet from EPO removing catches with same length-based selection gear as assessment. 
Among these fleets, observation errors on abundance indices were assumed to the same as assessment, 
and size data assuming a multinomial error structure with variance described by the quarterly sample 
size were assumed to be equally precise (effective sample size at 50). A variety of mean fishing mortality 
trajectories were simulated with noise for each fleet based on trend and mean fishing mortality from 
the assessment, that increased at the start of the time series then remained constant, and increased or 
decreased after being harvested for 38 years given the uncertainty of exploitation histories (Figure 4; 
Carruthers et al. 2012). Catchability coefficient was assumed to be constant over time for each fleet. 

The median of terminal spawning stock biomass relative to its maximum sustainable yield and to 
its unfished level for 500 PBF-like synthetic populations were 0.36 (± SD=0.13) and 0.09 (± SD=0.03), 
respectively (Figure 6).  

3. Alternative estimation models 

Five alternative estimation models were evaluated.  

CS) The Correctly Specified model included two spatial areas and estimation of movement rates for 
movement nodes fixed at the correct ages, time invariant length-based selection patterns estimated, 
and data given the correct sample weights.  
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TI) The Time Invariant model was a single area (areas-as-fleets) model with separate time invariant 
length-based selection patterns estimated for each fleet and data given the sample weights. The time 
invariant model is the most similar to the current assessment model.  

TV) The Time-Varying model was a single area (areas-as-fleets) model with separate time invariant 
length-based selection patterns for non EPO fleets, time-varying length-based selection estimated for 
the EPO fleet, and data given the sample weight.  

DW) The Down-Weighted model was a single area (areas-as-fleets) model with separate time invariant 
length-based selection patterns estimated for each fleet and size data given the 10% of the sample 
weights for non-CPUE fleets.  

AG) The Fleet Aggregated model was a single area (areas-as-fleets) model that combined catch and 
composition data for non-CPUE fleets, where composition data were weighted by their catch in 
numbers. The fleet aggregated model was estimated using time-varying age-based selection and a time 
invariant length-based selection. Fleets with CPUE were fit with a time invariant length-based selection 
pattern. All data were given sample weights.  

4. Comparison of model results 

We evaluated the performance of the estimation models based on the distribution of relative 
errors in the quantities of interest. Relative error (𝑅𝑅𝑅𝑅𝑑𝑑

𝑗𝑗) is defined as the percentage of difference 
between estimated values (𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑

𝑗𝑗 ) and true value (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗) divided by true value for quantity (j) for a given 
simulation run (d).  

𝑅𝑅𝑅𝑅𝑑𝑑
𝑗𝑗 =

𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑
𝑗𝑗 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗
× 100 

Bias was expressed as a percent and precision of the method was described by the distribution of 
relative error for method. 

 

Results 

1. Bias, precision, and percent converged models by method 

CS (spatially explicit model estimating movement) was the best performing model for both 
management quantities and derived statistics under both movement hypotheses (Figure 6 and 7). The 
difference between the Correctly Specified Model and the other models was magnified when movement 
was assumed to have a PDO (low frequency) forcing function. Percentage of converged models was 
inversely related to the number of parameters, although this convergence issue is substantially reduced 
when a penalized likelihood approach is used for time-varying deviations (see below). 

2. Cause of apparent bimodality 

An apparent bimodality was displayed in some derived terminal year quantities (Figure 7) from 
the areas-as-fleets models with time-invariant selection patterns and PDO movement. The apparent 
bimodality was related to the movement rate near the terminal end of the model (Figure 8). The 
bimodality is an artifact of the proportion simulated datasets with high, medium, or low movement 
(Figure 9). High and low movement rates result in negative or positive biases in terminal biomass, while 
intermediate movement results in estimates of derived quantities that lie between. In our simulation 
with PDO type movement, more high or low terminal movement rate scenarios were generated than 
intermediate resulting in the bimodal distribution for some quantities. 
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3. Precision of time-varying selection models (TV and AG)  

TV and AG can be improved with a penalized likelihood approach to the time-varying selection 
deviations. Penalized likelihood approach improves the convergence percentage to >99%. However, 
constraining the deviations is unlikely to resolve bias associated with either high or low movement rates 
at the end of the series. 

 

Discussion 

The spatially explicit model with estimated movement is the only approach that will lead to 
precise and unbiased estimates of some quantities of interest even when movement is not random. 
Models using alternative model process (selectivity) or down-weighting composition data are unlikely to 
be effective at accounting for movement when the movement is not random. However, some 
management quantities appear more robust than terminal year estimates, and these values may be 
more reliable if an areas-as-fleets approach is used.  

A correctly specified model will need to be based on a complete understanding of the system and 
likely requires direct observations on the process of movement (such as tagging). More research needs 
to be done to determine if a constrained use of movement parameters (to make the deviation 
parameters more estimable), even without direct observation of movement, is better than ignoring 
movement. The use of time-varying selection to account for movement is not demonstrably better than 
down-weighting composition data and entails the use of considerably more parameters. We 
demonstrate that constraining the deviations via a penalty results in better convergence and 
performance (Martell and Stewart 2014). 

This study was done with the sole purpose of comparing alternative models parameterizations 
that could be used to account for age-based movement. This study does not deal with the very real 
issues of misfit of the size composition in the current assessment due to sampling processes, 
combination of fleets with different selectivities, seasonal movements, and changes in the contact 
selectivity through time (Martel and Stewart 2014). Those issues need to be dealt with to prevent the 
composition data misfit from having undue influence on model results (Francis 2011). It is likely that 
adding more flexible selection patterns, including time-varying and non-parametric forms would be 
appropriate for those purposes, even if it does not successfully deal with un-modeled movement. 
Aggregating the non-CPUE fleets as in AG would likely benefit this approach by having only one fleet 
needing this detailed model structure. 

The stock assessment needs be spatially explicit to correctly account for spatial patterns due to 
movement (Hurtado-Ferro et al. 2014).  It may be that this goal is not attainable in the near future due 
to data limitation. Lacking a correctly specified model, special emphasis will need to be placed on how 
the inevitable composition misfit is affecting model performance (Sampson 2014).  The influence of 
composition misfit should be reduced wherever possible (Francis 2011). Our suggestion for the next 
assessment is to include two levels of data resolution: 1) fleet disaggregation and 2) aggregation of non-
CPUE fleets into a single fleet with flexible (Thorson and Taylor 2014) and time-varying selection.  
Models representing both levels of data complexity should be brought forward for review. 
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Table 1. Data types used and parameters estimated in the stock assessment model and in the operating 
models. In the operating models, sampling distributions of the parameters and variables that were used 
to develop each simulated population and derive all catch, CPUE and length observations. All parameter 
values (except for recruitment deviations and fishing mortality, F) were drawn once from the 
distribution to produce a single simulated population. Annual recruitment deviations and F’s were 
drawn from the appropriate distribution for each year of the simulation. Uniform random variables are 
represented by Uniform(minimum bound, maximum bound) and Gaussian random variables are 
represented by Normal(mean, standard deviation). 
 Stock assessment model Operating models 
Data   
  Dynamics calculated 1952-2012, Quarterly 1952-2012, Quarterly 
  Number of area 1 2 
  Number of fleets 14 6 

  Number of tuned indices 5 (3 JPN LL, 1 TWN LL, 1 JPN 
toll) 

6 (3 JPN LL, 1 JPN troll, 2 
EPO) 

  Number of fleets with length data 11 6 
   
Parameter estimated   
Movement   

  Fraction of fish move from WPO to 
EPO at age 1 (1952-2011) None 

State 1: Uniform (0.1, 0.7)  
State 2: Generated  
(See Figure 3) 

  Maxima age with 0.1% of fish move  
from WPO to EPO (𝐴𝐴max_WPO→EPO)  None Uniform (3, 4) 

  Fraction of fish move from EPO to 
WPO at age 1 None Fixed at 0.05 

  Maxima age with 99.9% of fish move  
from EPO to WPO (𝐴𝐴max_EPO→WPO) None Uniform (3, 4) 

   
Recruitment   
  Log unfished recruitment ln(R0) 
(‘000’s fish) 

Estimated Fixed at 9.09 

  Standard deviation for recruitment in 
log space (𝜎𝜎𝑅𝑅) 

Fixed at 0.6 Fixed at 0.6 

  Spawner-recruit steepness Fixed at 0.999 Fixed at 0.95 
  Recruitment deviations (1953-2011) Estimated Normal (0, 𝜎𝜎𝑅𝑅=0.6) 
   
Mortality   

  Natural morality (age-specific M, yr-1) 
Fixed (1.6 at age 0; 0.386 at 
age 1; 0.25 at age 2 above) 

Fixed (1.6 at age 0; 0.386 at 
age 1; 0.25 at age 2 above) 

  Fishing mortality (F, yr-1) for each 
fleet 

Estimated Generated (See Figure 4) 

  Initial fishing mortality Estimated Fixed at estimates from 
stock assessment 

   
Growth   
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  Length at age 0 (L0, cm) Fixed at 21.5 Fixed at 21.5 
  CV of length at age 0 Fixed at 0.262 Fixed at 0.262 
  Length at age 3 (L3, cm) Fixed at 109.194 Fixed at 109.194 
  CV of length at age 3 Fixed at 0.05 Fixed at 0.05 
  Growth coefficient (K) Fixed at 0.157 Fixed at 0.157 
   
Reproduction   
  Maturity at age Fixed (0.2 at age 3, 0.5 at age 

4, 1 at age 5 above) 
Fixed (0.2 at age 3, 0.5 at 
age 4, 1 at age 5 above) 

   

Selectivity patterns 
Estimated (Length-based, 
asymptotic and domed 
shapes, time-invariant) 

Fixed at estimates from 
stock assessment 
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Figure 1. Diagram of the simulation steps used to test age-based movement.  
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Figure 2. Age-based movement rate assumed in the simulation analyses. The fraction of fish from WPO 
area to EPO area at age 1 was assumed to be time-varying with mean rate at 40%.  
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a) Uniform 

 

b) PDO-like 

 

Figure 3. Nine examples of the time-varying movement rates for two states of nature in simulations, 
uniform (upper panel) and PDO-like (lower panel), where in each panel represents a single simulation 
(iteration). 500 simulated time-varying movement rates for each states of nature were generated in the 
study.
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F1: JPN & TWN longline  
(age 4-7+) 

 

F2: JPN small pelagic purse seine 
(age 1) 

 

F3: JPN tuna purse seine  
(age 2-5) 

 
 

F4: JPN troll & pole and line  
(age 0) 

 

 
F5: JPN set net  

(age 1-3) 

 

 
F6: EPO fisheries  

(age 1-3) 

 
 

Figure 4. Examples of simulated fishing mortality trends for each fishery, where upper panel indicates 
1,000 smooth trends of simulated fishing mortality and lower panel indicates 10 trends of simulated 
fishing mortality with noise for illustration purposes. 500 simulated fishing mortality trends with noise 
were generated for each states of nature in the study. 
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Figure 5. Box plot illustrating the distributions of spawning stock biomass relative to its maximum 
sustainable yield (MSY)-based reference points (upper panel) and spawning stock biomass relative to its 
unfished level (lower panel) from 500 synthetic populations for each states of nature. The horizontal line 
in the box represents median of the quantities, the box represents the lower and upper quartiles (25% 
and 75%), and the whiskers extend 1.5 times the inter-quartile range. 
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Figure 6. Violin plots illustrating the relative errors of estimated maximum sustainable yield (MSY)-based reference points for five estimation 
models applied to simulated populations for two states of nature, uniform (left panel) and PDO-like (right panel), where the dots indicate runs 
with invertible hessian, violin indicate kernel probability density of runs with invertible hessian, and number of runs with invertible hessian and 
number of active parameters estimated are shown.   
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Figure 7. Violin plots illustrating the relative errors of estimated quantities of interest for five estimation models applied to simulated 
populations for two states of nature, uniform (left panel) and PDO-like (right panel), where the dots indicate runs with invertible hessian, violin 
indicate kernel probability density of runs with invertible hessian, and number of runs with invertible hessian and number of active parameters 
estimated are shown. 
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Figure 8. Violin plots illustrating the relative errors of estimated 2011 spawning stock biomass for five estimation models applied to simulated 
populations for two states of nature, uniform (upper panel) and PDO-like (lower panel), where the dots indicate runs with invertible hessian and 
violin indicate kernel probability density of runs with invertible hessian. Dots are categorized by fraction of fish move from WPO to EPO at age 1 
in 2011.  
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Figure 9. Box plots illustrating the relative errors of estimated 2011 spawning stock biomass for five estimation models applied to simulated 
populations with PDO-like movement. M6 is M5 with an arbitrary penalty on the time-varying deviations of selectivity. Plots are categorized by 
fraction of fish move from WPO to EPO at age 1 in 2011.  
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