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For this preliminary assessment, Japanese and Hawaiian longline data were taken from an area in the
north Pacific bounded to the south by 15° N and to the east by 135 W. This central and western region of
the north Pacific is also bounded by areas of relatively low swordfish CPUE (Figure 1), and is here taken to
house a so called “unit stock”. This assumes that there is little exchange of swordfish to the south or the
east of the region. The region includes activities of Japanese and Hawaiian longline fleets, for which
complete catch and effort data by monthly 5° square strata are available. Other longline fleets and other
gear have also taken swordfish in the area, but data on these, particularly effort data, are not as complete.

Though total catch data are available for the Japanese and Hawaiian fleets, comprehensive catch at size
or catch at age data are not. Therefore, two assessment models requiring only total catch and effort were
tested. One of these is the Pella-Tomlinson model, which incorporates the concepts of net production rate
in a fish stock and the carrying capacity. The other model estimates explicit inputs to and outputs from the
stock in terms of recruitment and natural mortality in addition to fishing mortality.

For either of these models to be effective in assessing the status of a fish stock, there needs to be a
degree of “contrast” in the data, meaning that the stock should have been subjected to a wide variety of
fishing effort levels. This appears to be the case, particularly for the Japanese data, which extends from
1952 through 1996 (Figure 2), giving some hope that meaningful results could be obtained.

Pella-Tomlinson Model:

The underlying differential equation describing the population dynamics of the Pella-Tomlinson model
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where N is the swordfish abundance, ¢ is time, 7 is the maximum rate of population increase, & is the
carrying capacity, F is the fishing mortality, and m is shape parameter. Turning this into a difference
equation with unit (one year) time steps gives
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where 7 is now a subscript for year. Note that N on the right side of the equation is sometimes subscripted
with #+1. This is a strategy, called implicit time stepping, that prevents the instability that can result from
the model diving into negative abundance territory. Solving for Ny and defining the starting abundance

gives
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which is now a stable difference equation where the starting abundance is estimated to be a fraction f of the
carrying capacity at the start, and where /%, the fishing mortality from both the Japanese and US fleets, 1s

given by
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where the superscripts, J and U, stand for Japanese and US respectively, where g is the catchability, and
where the effort, E, is modified in each year by an exponential error factor constrained by the requirement
that the sum of the factors is zero. Predicted catch for the two fleets is given by

) ¢/ =F'N,; ¢ =F'N,
Note that k and ¢ are subscripted by year, meaning that they are allowed to vary with time. They are
constrained to vary in an auto-correlated time series as follows:
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There are 45 years of Japanese catch and effort data (1952—-1996) but only 7 years of US (Hawaiian
fleet) data. Therefore the catchability series for the US fleet start in year 39 of the time series. The model
as it is explained to this point is basically the same one Fournier (199_) uses as an example to demonstrate
the use of AD Model Builder — in his case used to fit a Pella-Tomlinson model to north Pacific halibut data.
In the present case the model is modified to allow two fleets instead of just one, and catchability is given
the possibility to vary with time. The procedure for fitting the model to data, that is, estimating the model
parameters, makes use of AD Model Builder and is also adapted from Fournier’s example. The estimated
parameters of the model are:

Parameter Parameter description Count
symbol

r Maximum rate of population increase 1

ko Carrying Capacity at start 1
Yij Starting abundance as fraction of ky 1
5E’J Japanese E-deviations 45
5Efj US E-deviations 7
ko Carrying Capacity at start 1
ok, k-deviations 44
q ({ Japanese catchability at start 1
oq] Japanese g-deviations 44
qf)] US catchability in year 39 1
5th US g¢-deviations 6
Total 151

Parameters are estimated by minimizing an objective function that incorporates the sum of squares of
deviations between logarithms of observed data and model predictions. However, with 150 parameters and
only 52 data points (45 for Japan, and 7 for Hawai’i), it is necessary to put further constraints on the
parameter values by adding extra terms to the objective function. The objective function, then, is given by
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where C ’J and C,U are the observed Japanese and U.S. catches, where Wz, W, and W, are weighting factors
used to set the relative importance of the different sources of deviance, and where
count (C,j) + count (C,U) + count (5E,J ) + count (EE,U )
. =
() ! + count (5%, ) + count (5th ) + count (51],“)

np=45+7+45+7+44+44 +6=198

A further modification of this model was made to accommodate catch of swordfish by fleets for which
there is no information on effort, or very unreliable information (Taiwan and Korea longline and Japanese
drift gillnet). During a part of the time series this “cryptic” catch amounted to a substantial portion of the
harvest. To account for it without knowledge of associated effort or catchability, the model was modified

to force removal of an observed cryptic catch, QC , in each time step. Thus Equation 3 is changed to:
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Of course the model is now unstable because the abundance at the beginning of a time step (first term on
the right in the above equation) might not be enough to satisfy the cryptic catch (second term above) in
which case the abundance will be negative. However, I was able to force the model fitting procedure to
avoid negative situations by two further modifications. At each time step instead of directly calculating
N, from equation 9, a temporary, trial abundance is calculated, i.e.
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that is, the average of N, and its absolute value. Thus, if Ny, is positive, Ny.y is set t0 Nigy, , but if Nimy
is negative, N,., is set to zero. In addition, at each time step a penalty term is added to the objective

function:

so that when the fitting procedure tries to go into regions of negative abundance it receives a penalty of the
square of twice the magnitude of the projected negative values. In practice, all final converged values of
the objective function till now have had a penalty of zero, though there could well have been some positive
penalties on the path to convergence.

Natural Mortality and Recruitment Model:

This model is similar in many ways to the model detailed above in that the input data are the same and
same techniques are used for model fitting and for accommodating the cryptic catch. However the concept




of carrying capacity and maximum rate of natural increase are replaced by explicit elements for recruitment
and mortality. The basic differential equation for this model is:
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Integrating over unit time steps and incorporating cryptic catch produces the following difference equation:
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Effort deviations and time varying catchability is specified as in the Pella-Tomlinson model.
Recruitment is directly estimated as an auto-correlated time series similar to the carrying capacity and
catchability time series in the Pella-Tomlinson model. Thus recruitment is given by

(15) R, =R_e™ ; R =R,

The unfished equilibrium abundance does not appear explicitly in this model, but would be given by R/M
from Equation 12 with F set to zero. Thus in analogy to the Pella-Tomlinson model, the starting abundance

is given by
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The estimated parameters for this model are:
Parameter Parameter description Count
symbol

Ry Recruitment at start 1
OR, R-deviations 44
M Natural Mortality 1
Yij Starting abundance as fraction of Ry/M 1
5Elj Japanese E-deviations 45
SEY  US E-deviations 7
q g Japanese catchability at start 1
5qu Japanese g-deviations 44
q) US catchability in year 39 1
é‘qtu US g-deviations 6

Total 151




The objective function is given by
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Results

Some difficulty was encountered in fitting the models to the data. The parameters must be bounded to
prevent the searching procedure from wandering into unreasonable territory. However, runs were rejected
if one or more of the parameters converged close to or against 2 boundary. For at least some settings of
weighting factors, there were multiple minima in the objective function. Also, for some settings and some
regions of parameter space, the Hessian matrix was not positive definite, that is, the objective function was
flat or curved downward in one or more dimensions. With judicious use of parameter bounds, starting
search at various points in parameter space, and fitting in phases (keeping some parameters constant till
convergence is achieved in other parameters) — i.e. many of the “tricks of the trade” available with AD
Model Builder — some examples of convergence to reasonable parameter values were obtained.

Pella-Tomlinson Model:

The fitting procedure converged most readily when most of the residual error was ascribed to effort
deviations rather than to catch deviations by setting a low value of the weighting factor for effort
deviations, W. Figure 5 shows the results obtained with Wgset to 0.1 implying that our uncertainty in
effective effort is about 10 times ‘greater than our uncertainty about catch. The result is very small
deviations in catch and large ones in effort. Note that there are stanzas lasting several years during which
the effort deviations are either all positive or all negative. In this run of the model the weighting factors for
catchability and carrying capacity deviations, ¥, and W, , were both set to 100, which effectively inhibits
variability in those factors. Therefore the ¢ and k lines are flat. In this, and all other runs of the model, the
abundance is projected for 10 years beyond the end of the data (to year 2006) assuming no fishing effort
and a constant k equal to k in the last year of the data. The estimate of r (ca. 2% per year) is low, but the
fishing mortality is even lower on average, which means a low exploitation rate. The shape parameter, m,
in this and all other fittings of this model is approximately 2, implying a quadratic shape to the yield versus
effort curve. The abundance at the start of the time series is almost three times k. So the scenario features
a population with the following characteristics: has a slow turnover rate; was somehow pushed way above
its carrying capacity prior to the start of the fishery; is slowly decaying toward that carrying capacity; is
largely unaffected by the mild exploitation of the fishery.

For the results given in Figure 6, W, and W, were set to 0.1, which gives g and & some freedom to vary
in time. Much of the effort deviation of the previous run is now absorbed by variation in ¢ with the result
that the effort deviations are smaller than previously, and runs of all positive or all negative deviation are
not so apparent. The estimate of r is even smaller than before, but fishing mortality is about three times
larger than before and also about three times larger than » —an extraordinarily high exploitation rate. In
this case k remained constant even though it had freedom to vary, and the starting abundance is greater
relative to k than before. The scenario in this case is one of an even slower turnover in the population that,




again, was somehow pushed above its carrying capacity. The fishery is taking advantage of this windfall
by heavily exploiting the population, and if that exploitation rate were to continue, the abundance would no
doubt eventually decay to much less than the carrying capacity.

Figure 7 shows results of a run in which the weighting factors and parameter bounds were identical to
those in the run shown in Figure 6, but the starting point in parameter space was different. In particular, the
k-deviations started out with non-zero estimates resulting from a run with /7, set to 0.01, that is, with even
greater freedom of variation. With these starting values the estimation procedure converged to a very
different set of parameter estimates. In this case k varies in time, and r is much greater (ca. 20% per year)
than in either of the previous runs, so much so that the exploitation rate is now low even though the fishing
mortality is hardly different from the previous run. In this scenario the population is turning over rapidly
and tracking with some delay the variations in the carrying capacity while the fishery, with its low
exploitation rate, has little effect. The runs shown in Figures 6 and 7 are an example of multiple minima in

the objective function.
Recruitment and Mortality Model:

This model had more difficulty in converging than the Pella-Tomlinson model, although it converged
readily with R- and g-deviations effectively turned off (large values of Wy and W,). The conditions of this
run correspond to the Pella-Tomlinson run shown in Figure 5. The results (Figure 8) are roughly similar,
but with an even lower exploitation rate and not quite as large a discrepancy between the starting
abundance and the equilibrium abundance.

Figure 9 shows results with g-deviations still turned off but some freedom for the R-deviations (Wp set
to 0.6). There is some fluctuation in recruitment, but other than that the results are similar to the previous
run. For the results in Figure 10, W was diminished slightly to 0.5, and the results are dramatically
different, demonstrating an extreme sensitivity to a weighting factor. In fact, the Figure 10 does not
represent a true convergence because two parameters, Ry and M, are pushed against their upper bounds (10°
and 0.9 respectively). Raising the bounds by orders of magnitude just resulted in these parameters pushing
against their bounds again. This is an example of “runaway” parameter estimates. Attempts to free up the
g-deviations gave similar results in that more than a very mild amount of variation in ¢ also produced
runaway parameters.

Holding M to a fixed value (0.2 yr'') prevented R, from running away, and allowed a proper
convergence with considerable freedom of variation in catchabilities and in R (Figure 11). In this case the
catchabilities, ¢’ and qY, are an order of magnitude higher than in other runs presented above, as is the
fishing mortality, which is relatively close on average to M. Therefore there is a substantial exploitation
rate, but not extraordinarily high as in Figure 6. As a result, the abundance is held substantially below the
carrying capacity until the fisheries (in the model) close in 1997, and thereafter the abundance climbs
toward its equilibrium. In contrast to Figure 7 with its overall decline in carrying capacity (and
abundance), in this scenario the carrying capacity and abundance are trending upwards. However, the
abundance is much lower.

Discussion

The results obtained with these models indicate a variety of contrasting possible scenarios varying from
declining to rising abundance trends, from slow to fast turnover rates, and from minimal to very high
exploitation rates. This, together with the difficulty that these models show in converging on reasonable
parameter estimates, indicates that the fishery data may not contain enough “contrast”, i.e. not enough
information, to easily determine the model parameters. As a consequence, there is little power in the data
now at hand to resolve the differences between the various scenarios. Multiple minima in the objective
function, great sensitivity to weighting factors, and runaway parameter estimates are all indicative of lack
of contrast. This is in spite of the large variation in effort. The problem is that the population must respond
to the changing effort in order to produce a useful signal, but if the maximum of a variable exploitation rate
is still very light, there will be little discernable response in the dynamics of the population, and the
variations will be mostly related to environmental variables. From that point of view, Figure 7, the Pella-



Tomlinson results with varying k, is perhaps the most realistic scenario, but because of the sensitivity to the
choice of weighting factors, it seems premature to accept those results as definitive.

The problem with low contrast is worse for the natural mortality and recruitment model than for the
Pella-Tomlinson because it attempts to disassemble the parameter r, which represents net productivity, into
components of gross production and mortality. This requires more information than just determining the
net production. Using up some of the degrees of freedom by allowing ¢ or R, to vary, makes disassenbly
of net production impossible. Therefore R, and M can vary boundlessly as long as net production stays
about the same, which results in runaway parameter estimates. Fixing one of these parameters (M) to an
assumed value allowed proper convergence on the other. Perhaps a Bayesian prior probability distribution
applied to either or both parameters would also allow proper convergence. Another possibility, currently
being tested, is to replace the variable recruitment series with a two-parameter recruitment function, which
would use up many fewer degrees of freedom than the recruitment series.

In addition to the problem of contrast, a likely source of difficulty is that the structures of these models
are badly inconsistent with the data, that is, the biological and other processes coded in the models could be
inconsistent with the real processes that produced the data. Figure 11 is instructive in this regard.
Recruitment, R, shows a bump in early 1990s that could be accommodating the increase in fishing mortality
as the Hawaiian fishery starts up. It would be interesting to see if the other variations in R, are associated
with major changes in the distribution of the Japanese fishery. Of course what really matters is the
distribution of the fishery in relation to the distribution of the fish, which is also changeable. In the model,
the fish “stock” is a well-defined entity, and any changes in abundance of that stock are related to processes
of recruitment and mortality. But what could be really happening is that the boundaries of what might
nebulously be called the “effective” stock might be changing geographically, that is, the effective definition
of what constitutes the “stock” — what is in and what is out — might be changing in time. Until we come to
grips with this problem, any stock assessment will always be imbued with basic questions such as:
abundance of what?; fishing effort applied to what?; and so on. These questions will remain as long as our
assessment models insist on treating the resource as a “unit stock™ even with more sophisticated models
that deal with catch at age. The way forward seems to me to involve recognizing the spatial heterogeneity
in the swordfish populations and the fisheries and incorporating that heterogeneity explicitly in spatially
disaggregated models as has been done for albacore and yellowfin tuna in the south Pacific. ~Such models
will necessarily need to deal with movement of fish as well as fleets. They will also require new sources of
data, particularly tagging data, which not only give greater power to estimate parameters of population
dynamics in a local area, but also power to estimate movement or exchange rates of fish between local

areas.
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Figure 2. Effective swordfish effort for Japanese and Hawaiian longline fleets. Effective effort is the catch
aggregated by year divided by the average CPUE in each year ( CPUE averaged over 5 degree squares).
For the Hawaiian data, the CPUE was determined only from trips identified as swordfish (---or mixed?---)

trips.




400

Catch (1000 fish)
200 300

100

§ r=0.0197
o
m=1.97
3 qJ = 1.75e-08
b3 quU = 1.39e-07
g
ot 24
23
go
>
£
g
(=]

0.0

60000 80000

40000

Abundance (kito-fish)

20000

1950 1960 1970 1980 1990 2000
Year

Figure 5. Results of fitting Pella-Tomlinson model (W= 0.1, W,= 100, W= 100).
Top: Solid lines — Japanese and Hawaiian longline swordfish catch predicted from model

(é’ tj and (A:’,U ). Points — observed catch (C,J and C,U ). Dashed line — “cryptic” catch (C ,C — see text).
Middle: Solid lines — swordfish fishing mortality exerted by Japanese and Hawaiian fleets
(F’ andF"). Points — fishing mortality before adjusting by effort deviations (¢/E] and gV E —see

Equation 4). Dashed lines — catchability series multiplied by mean efforts (¢ E” and g/ E ) to show

catchability on the same scale. Estimated values for , m, and averages over time of q,’ and th in legend.

Bottom: Solid line — Estimated abundance (N, ). Dashed line — estimated carrying capacity (X, ).
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Figure 6. Results of fitting Pella-Tomlinson model (Wg= 0.1, W, = 0.1, W;=0.1 — first try).
Top: Solid lines — Japanese and Hawaiian longline swordfish catch predicted from model

(CA"J and é’,” ). Points — observed catch (C; and C ). Dashed line — “cryptic” catch (C € — see text).
Middle: Solid lines — swordfish fishing mortality exerted by Japanese and Hawaiian fleets

(F’ and FV ). Points — fishing mortality before adjusting by effort deviations (¢/E] and ¢/ E” —see

Equation 4). Dashed lines — catchability series multiplied by mean efforts (thE 7 and q,UE_ Y) to show

catchability on the same scale. Estimated values for 1, m, and averages over time of qtj and th in legend.

Bottom: Solid line — Estimated abundance ( N, ). Dashed line — estimated carrying capacity (£, ).
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Figure 7. Results of fitting Pella-Tomlinson model (W= 0.1, W,=0.1, W,= 0.1 — second try, different

starting values).
Top: Solid lines — Japanese and Hawaiian longline swordfish catch predicted from model

(C/ andCY). Points — observed catch (C 7 and C”). Dashed line — “cryptic” catch (C; - see text).
Middle: Solid lines — swordfish fishing mortality exerted by Japanese and Hawaiian fleets
(F’and FY). Points — fishing mortality before adjusting by effort deviations (¢ JE! and g"EV —see

Equation 4). Dashed lines — catchability series multiplied by mean efforts (qtj E’ and q,UE Y to show
catchability on the same scale. Estimated values for r, m, and averages over time of g/ and g inlegend.

Bottom: Solid line — Estimated abundance ( N, ). Dashed line — estimated carrying capacity (&, ).
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Figure 8. Results of fitting directly estimated recruitment model (Wg=0.1, W,= 100, W= 100).
Top: Solid lines — Japanese and Hawaiian longline swordfish catch predicted from model
(C/ and CY). Points — observed catch (C Y andC” ). Dashed line — “cryptic” catch (C € - see text).
Middle: Solid lines — swordfish fishing mortality exerted by Japanese and Hawaiian fleets
(F’ and F" ). Points — fishing mortality before adjusting by effort deviations (¢ E; and ¢, E; —see
Equation 4). Dashed lines — catchability series multiplied by mean efforts (¢/E’and g EY) to show
catchability on the same scale. Estimated values for r, m, and averages over time of q,’ and qf’ in legend.
Bottom: Solid line — Estimated abundance ( N, ). Dashed line — estimated recruitment, R, (right hand .

scale) or equilibrium abundance, R, /M (left hand scale).
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Figure 9. Results of fitting directly estimated recruitment model (Wg= 0.1, W, = 100, Wz=0.6).
Top: Solid lines — Japanese and Hawaiian longline swordfish catch predicted from model

( CA’,J and é’,U ). Points — observed catch (C; andC/ ). Dashed line — “cryptic” catch (C < — see text).
Middle: Solid lines — swordfish fishing mortality exerted by Japanese and Hawaiian fleets
( th and Ff’ ). Points — fishing mortality before adjusting by effort deviations (q,J E ,J and q,U E ,U —see

Equation 4). Dashed lines — catchability series multiplied by mean efforts (¢’ £” and ¢” EY ) to show
catchability on the same scale. Estimated values for r, m, and averages over time of q,’ and q,U in legend.
Bottom: Solid line — Estimated abundance (V, ). Dashed line — estimated recruitment, R, (right hand

scale) or equilibrium abundance, R, /M (left hand scale).
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Figure 10. Results of fitting directly estimated recruitment model (Wg= 0.1, W,= 100, Wz=0.5).
Top: Solid lines — Japanese and Hawaiian longline swordfish catch predicted from model

(C/ and CY). Points — observed catch (C 7 and CV). Dashed line — “cryptic” catch (C; - see text).
Middle: Solid lines — swordfish fishing mortality exerted by Japanese and Hawaiian fleets
(F’ andF"). Points — fishing mortality before adjusting by effort deviations (¢/E] and q"EY —see

Equation 4). Dashed lines — catchability series multiplied by mean efforts (¢; £’ and g/ E”) to show
catchability on the same scale. Estimated values for r, m, and averages over time of g/ and q” inlegend.
Bottom: Solid line — Estimated abundance ( NV, ). Dashed line — estimated recruitment, R, (right hand

scale) or equilibrium abundance, R, /M (left hand scale).
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Figure 11. Results of fitting directly estimated recriifment model (We=0.1, W,= 0.1, W= 0.05, M fixed

at 0.2).
Top: Solid lines — Japanese and Hawaiian longline swordfish catch predicted from model

( C ,J and éf’ ). Points — observed catch (C ,J and C,U ). Dashed line — “cryptic” catch (C ,C — see text).
Middle: Solid lines — swordfish fishing mortality exerted by Japanese and Hawaiian fleets
(Fand EV). Points — fishing mortality before adjusting by effort deviations (g; E; and g E — see

Equation 4). Dashed lines — catchability series multiplied by mean efforts (q,’ E7 and qf’ EY) to show

catchability on the same scale. Estimated values for r, m, and averages over time of qtj and qf’ in legend.

Bottom: Solid line — Estimated abundance (N, ). Dashed line - estimated recruitment, R, (right hand
scale) or equilibrium abundance, R, /M (left hand scale). '

~18-

1500

500




