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Abstract	
We	analyzed	 Japanese	 longline	 logbook	data	 to	obtain	 indicators	of	 the	historical	
trends	of	the	Pacific	blue	marlin.	We	applied	the	spatiotemporal	model	for	the	CPUE	
standardization	because	the	Japanese	longline	area	coverage	shrinks	year	by	year.	
We	used	an	R-INLA	package	and	WAIC	to	make	an	appropriate	model	selection	for	
the	 random	effect	model.	At	 first,	we	 tried	 the	pan-Pacific	 analysis	 similar	 to	 the	
Habitat	model	used	in	the	previous	stock	assessment.	However,	this	model	did	not	
converge.	 Secondly,	 considering	 the	 average	 catchweight	 spatial	 pattern,	 we	
extracted	the	area	that	fish	of	the	size	corresponds	to	the	SS3	model's	selectivity.	The	
smallest	WAIC	among	the	converged	models	was	the	seasonal	geostatistical	model.	
However,	various	problems	have	been	identified	with	this	model.	The	randomized	
quantile	residuals	indicated	overestimation	in	the	1990s	population.	In	detail,	the	
spatial	trends	of	randomized	quantile	residuals	differed	between	1994	and	2018.	In	
other	words,	the	model	validation	suggests	the	need	to	build	a	spatiotemporal	model.	
However,	the	spatiotemporal	model	could	not	be	estimated	the	fixed	effect	of	season	
and	 intercept.	 Also,	 we	 need	 to	 perform	 a	 statistical	 analysis	 to	 determine	 the	
analysis	area	because	the	trend	of	standardized	CPUE	strongly	depends	on	the	area	
definition.	 From	 these	 results,	 we	 judged	 that	 the	 results	 of	 this	 study	 are	
preliminary.	
	
Introduction	
The	ISC	BILLWG	conducted	a	stock	assessment	of	 the	Pacific	blue	marlin	 in	2016	
(ISC	2016).	This	stock	assessment	used	a	Japanese	abundance	index	estimated	by	a	
habitat	 model	 (Kai	 et	 al.,	 2016).	 The	 habitat	 model	 considers	 environmental	
variability	 and	 the	 corresponding	 distribution	 of	 the	 Pacific	 blue	marlin.	 On	 the	
other	hand,	in	recent	years,	CPUE	standardization	methods	using	the	spatiotemporal	
models	are	being	established	(Kai	et	al.,	2017).	It	is	possible	to	estimate	the	habitat	
model	 with	 the	 same	 accuracy	 because	 the	 spatiotemporal	 model	 handles	 the	
location	information	as	a	latent	spatial	field.	Besides,	R	software	package	R-INLA	can	
calculate	 Widely	 Applicable	 Information	 Criterion	 (WAIC)	 in	 the	 Bayesian	
estimation	process,	 and	 the	 randomized	quantile	 residuals	 (RQR)	 can	be	used	 to	
diagnose	the	model's	estimation	accuracy	(Lindgren	&	Rue	2015).	In	this	study,	we	
attempted	CPUE	standardization	for	the	Pacific	blue	marlin	using	R-INLA.	
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Material	and	methods	
1.	Data	source	
Logbook	data	
The	fleet	of	Japanese	offshore	and	distant	water	longline	was	divided	into	the	early	
and	the	late	series.	The	Japanese	longline	logbook	format	has	changed	since	1994,	
and	 the	 quality	 of	 the	 data	 changes	 before	 and	 after.	 The	 catchability	 has	 also	
changed	significantly	 in	 the	1990s	because	the	mainline	material	was	changed	to	
nylon.	As	a	result,	the	branch	line	did	not	sink	deeply	unless	the	hooks	between	floats	
(HBF)	were	increased.	For	example,	the	five	HPB	in	the	1990s	and	five	HPB	in	the	
1970s	have	a	different	 effect	on	 the	blue	marlin	 catch.	The	operating	area	 in	 the	
pacific	 ocean	 of	 Japanese	 longline	 fishery	 is	 shrinking	 year	 by	 year.	 Thus,	 a	
spatiotemporal	 model	 is	 required	 for	 the	 CPUE	 standardization.	 We	 used	 the	 R	
software	package	R-INLA	to	apply	the	spatiotemporal	model	(Lindgren	&	Rue	2015).	
The	body	size	(cohort)	of	blue	marlin	varies	depending	on	the	fishing	area.	"Area	as	
fleet	 approach"	may	be	needed	 to	 reflect	 such	an	area	dependent	 size	 selectivity	
(Waterhouse	 et	 al.,	 2014).	 This	 study	 considered	 that	 the	 length-frequency	 data	
mode	 is	 150	 cm	 and	 extracted	 the	 area	 where	 small	 size	 fish	 are	 caught.	 For	
reference,	we	also	analyzed	in	a	wide	area,	the	same	as	the	last	stock	assessment.	
	
Data	screening	
In	carrying	out	the	analysis,	we	screened	the	logbook	data	as	follows:	
	
• Area	in	WCPO:	-10=<lat<25,	125=<lon<210	(see.	Figure	1)	
• Time	period:	1994	~	2018	
• Number	of	hooks:	>200	
• Hooks	between	floats:	3-36	
	
To	reduce	the	data	set	size,	we	aggregated	the	data	set	by	location,	vessel	name,	
year,	month,	and	HBF.	
	
2.	Model	developing	
Model	assumption	
We	assumed	a	linear	or	non-linear	regression	to	explain	the	number	of	blue	marlin	
catch	(bum)	as,	
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bum	=	intercept	+	trend	+	noises	+	offset(1,000	hooks).	
	
The	 number	 of	 blue	marlins	 caught	 (observed	 value:	 bum)	 follows	 zero-inflated	
Poisson	 distribution	 (ZIP)	 or	 Poisson	 distribution	 (PO).	 ZIP	 can	 eliminate	 the	
overdispersion	of	Poisson	distribution.	Negative	binomial	distribution	(NB)	can	also	
consider	the	overdispersion	of	count	data.	However,	we	did	not	use	the	NB	because	
Minami	et	al.,	2007	reported	that	the	estimated	CPUE	trend	tends	to	be	steeper	in	
the	NB	model.	We	also	did	not	use	the	delta	model	to	compare	with	the	simple	one-
step	model.	

We	 assumed	 the	 Japanese	 longline	 logbook	 had	 the	 annual	 population	
"trend"	 that	 depends	 on	 the	 selectivity	 of	 the	 longline	 fishery.	 To	 examine	 our	
assumption,	we	tested	the	three	models:	
	
• The	fixed	effect	model	of	the	year	
• The	autoregressive	model	of	order	1	(ar1)	
• The	random	walk	model	of	order	1	(rw1).	
	

Various	"noises"	are	affecting	the	number	of	the	catch	of	blue	marlin.	
We	used	four	covariates	that	are	the	HBF	(or	gear	deep	and	shallow),	season,	vessel	
name,	and	locations	to	remove	the	"noises".	Each	covariate	was	applied	to	a	fixed	or	
a	random	effect.	We	compared	four	types	of	spatial	covariates	that	are	the	fixed	effect	
of	a	5°x5	°	grid,	the	random	effect	of	a	5°x5	°	grid,	the	stochastic	partial	differential	
equation	(SPDE)	model,	spatiotemporal	SPDE	model,	and	seasonal	SPDE	model.	The	
vessel	name	is	considered	a	random	effect.	HBF	effect	was	applied	fixed	effect	(deep:	
HBF>8,	shallow:	HBF<=8)	or	random	effect.	

The	list	of	models	examined	in	this	study	is	shown	in	Table	1.	
	
Model	selection	
There	are	various	debates	about	the	accuracy	of	AIC	in	the	random	effect	model.	This	
time,	we	used	the	WAIC	that	supports	the	random	effect	model.	The	WAIC	can	only	
be	calculated	by	Bayesian	estimation.	Thus,	we	used	the	R-INLA	package.	
	
Model	validation	
We	checked	how	much	the	overdispersion	had	been	eliminated.	We	also	clarified	
with	the	Randomized	Quantile	Residuals	(RQR)	for	any	unnatural	tendencies	in	the	
estimates.	
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3.	Standardized	CPUE	
When	estimating	the	response	variable	with	INLA,	it	is	necessary	to	create	a	data	set	
of	covariates	used	for	estimation	at	the	same	time	as	parameter	estimation.	However,	
the	Japanese	longline	data	is	so	large,	and	this	function	did	not	work.	Therefore,	we	
extracted	the	posteriors'	mean	for	both	the	required	fixed	and	random	effects	and	
multiplied	 them	 by	 all	 year,	 quarter,	 and	 location	 combinations	 to	 calculate	 the	
annual	average	CPUE.	

The	 same	 calculation	 is	performed	 for	 the	 standard	error	 (SE).	However,	
instead	 of	 this	 method,	 it	 is	 necessary	 to	 calculate	 the	 parameters'	 variance-
covariance	matrix	and	calculate	the	approximate	value	of	SE	by	the	delta	method	
(probably	INLA	outputs	variance-covariance	matrix).	
	
Result	and	discussion	
We	built	multiple	models	and	attempted	to	standardize	CPUE	for	Pacific	blue	marlin	
caught	by	Japanese	longline	fishery.	We	first	tried	to	standardize	in	the	same	area	as	
the	habitat	model,	but	the	SPDE	model	could	not	estimate	the	fixed	effect	parameters.	
Then,	we	cut	out	the	area	where	the	juvenile	fish	was	caught	corresponding	to	the	
2016	stock	assessment's	selectivity	and	conducted	the	analysis.	

For	the	WAIC,	the	spatiotemporal	ZIP	model	was	the	smallest,	followed	by	
the	seasonal	SPDE	model	(Table.	2).	However,	the	spatiotemporal	ZIP	model	could	
not	 estimate	 the	 fixed	 effect	 (e.g.,	 year	 effect)(Table.2).	 Thus,	 we	 selected	 the	
seasonal	SPDE	model,	where	all	parameters	could	be	estimated.	Using	the	selected	
model,	we	confirmed	the	residual	tendency	of	the	seasonal	SPDE	model.	The	RQR	
for	the	predicted	value	did	not	vary	uniformly	and	showed	an	unnatural	tendency	
(Figure.	2).	Looking	at	the	RQR	by	year,	the	median	was	biased	negative	in	the	1990s	
(Figure.	3).	It	indicates	that	the	predicted	value	was	overestimated.	Focus	on	the	RQR	
in	1994	and	2018,	the	tendency	of	the	RQR	showed	a	difference	(Figure	4).	Also,	the	
estimated	seasonal	spatial	field	showed	that	the	location	changes	seasonally	(Figure	
5).	From	these	results,	this	model	can	explain	the	spatial	effect	that	changes	with	the	
seasons.	However,	it	was	considered	that	we	need	to	consider	the	annual	fluctuation	
further	in	the	spatial	effect.	For	example,	R-INLA	can	specify	AR(k)	as	an	option	of	
the	 spatiotemporal	model,	 so	we	 can	 create	 a	model	 that	 takes	 into	 account	 the	
spatial	field	that	fluctuates	from	year	to	quarter.	However,	such	complex	models	are	
computationally	 expensive	 and	 crash	 in	 some	 cases.	 Thus,	 we	 need	 a	 high-
performance	PC	essentially.	
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The	standardized	CPUE	tended	to	decline	from	1994	to	2018	(Figure	6).	However,	
the	nominal	CPUE	shows	the	opposite	trend	(Figure	6).	Considering	the	annual	trend	
of	 the	 RQR,	 the	 estimated	 results	 were	 overestimated	 in	 the	 1990s.	 Therefore,	
further	examination	is	required	for	this	downward	CPUE	trend.	On	the	other	hand,	
it	is	necessary	to	pay	attention	to	the	area	range	specification.	Because	standardized	
CPUE	is	very	much	affected	by	data	screening,	it	is	advisable	to	perform	a	separate	
analysis	 in	 advance	 when	 dividing	 areas	 (Ijima	 and	 Kanaiwa	 2018).	 From	 these	
results,	 we	 propose	 that	 the	 analysis	 results	 of	 this	 standardized	 CPUE	 are	
preliminary,	and	it	is	desirable	to	use	the	habitat	model	for	the	next	stock	assessment.	

For	the	future	study,	we	need	to	i	)	examine	the	"Area	as	Fleet	Approach"	and	
ii)	 build	 a	model	 that	 incorporates	 seasonal	 fluctuations	 into	 the	 spatiotemporal	
model.	
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Table	1.	Candidate	models.	
Data	 	
Area	 Model	 Distribution	 Model	description	

WCPO	 po_yrFIX_glm	 PO	 bum	~	yr2	+	qtr	+	gear	+	latlon5	

WCPO	 po_yrFIX_GLMM	 PO	
bum	~	yr2	+	qtr	+	gear	+	 	
f(latlon5,	model="iid",	hyper=hcprior)	+	 	
f(jp_name2,	model="iid",	hyper=hcprior)	

WCPO	 zip_yrFIX_GLMM	 ZIP	
bum	~	yr2	+	qtr	+	gear	+	 	
f(latlon5,	model="iid",	hyper=hcprior)	+	 	
f(jp_name2,	model="iid",	hyper=hcprior)	

WCPO	 zip_rw1_GLMM	 ZIP	

bum	~	f(yr,	model="rw1",	hyper=hcprior)	+	 	
qtr	+	gear	+	 	
f(latlon5,	model="iid",	hyper=hcprior)	+	 	
f(jp_name2,	model="iid",	hyper=hcprior)	

WCPO	 zip_ar1_GLMM	 ZIP	

bum	~	f(yr,	model="ar1",	hyper=hcprior)	+	 	
qtr	+	gear	+	 	
f(latlon5,	model="iid",	hyper=hcprior)	+	 	
f(jp_name2,	model="iid",	hyper=hcprior)	

WCPO	 zip_ar1_SPDE	 ZIP	

bum	~	0	+	intercept	+	 	
f(yr,	model="ar1",	hyper=hcprior)	+	
qtr	+	gear	+	f(w,	model=spde)	+	
f(ves_eff,	model="iid",	hyper=hcprior)	

All	Area	 zip_rw1_SPDE	 ZIP	
bum	~	0	+	intercept	+	f(yr,	model="rw1")	+	
	 gear	+	f(w,	model=spde)	+	
	 f(ves_eff,	model="iid")	 	

WCPO	 zip_yrFIX_SPDE	 ZIP	 bum	~	0	+	yr	+	qtr	+	f(w,	model=spde)	+	
	 f(ves_eff,	model="iid",	hyper=hcprior)	

All	Area	 p_GLMM_SPDE	 PO	 bum	~	0	+	intercept	+	yr	+	qtr	+	gear	+	 	
f(w,	model=spde)	+	f(ves_eff,	model="iid")	 	

WCPO	 zip_ar1_SpTmp_25yrs	 ZIP	

bum	~	0	+	intercept	+	 	
f(yr,	model="ar1",	hyper=hcprior)	+	
qtr	+	gear	+	f(w,	model=spde,	group=w.group,	 	
control.group=list(model="ar1",	
hyper=h.spec))+	
	 f(ves_eff,	model="iid",	hyper=hcprior)	
*w.group	=	25	yrs	

WCPO	 zip_ar1_SpTmp_4season	 ZIP	

bum	~	0	+	intercept	+	f(yr,	model="ar1",	
hyper=hcprior)	+	
f(w,	model=spde,	 	
group=w.group,	
control.group=list(model="iid"))	+	 	
f(hpb,	model="iid",	hyper=hcprior)	+	 	
f(ves_eff,	model="iid",	hyper=hcprior)	*w.group	
=	4	seasons	
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Table	2.	Result	of	parameter	estimation	by	INLA.	
Model	 WAIC	 Dispersion	 Conversion	(checking	the	posterior	distribution)	

po_yrFIX_glm	 1.00E+18	 6.842779	 yes	

po_yrFIX_GLMM	 786,187	 	 3.600052	 yes	

zip_yrFIX_GLMM	 739,485	 	 2.096098	 yes	

zip_rw1_GLMM	 739,485	 	 2.095213	 no(yr)	yes(other	parameters)	

zip_ar1_GLMM	 739,484	 	 2.095476	 no(yr)	yes(other	parameters)	

zip_ar1_SPDE	 732,146	 	 2.035494	 no	(gear	&	intercept	&	yr_precision)	yes(qtr,	vessel	
effect,	w,	zero	prob)	

zip_rw1_SPDE	 1,630,475	 	 1.627742	 no	(yr_precision)	yes(gear	&	intercept,	vessel	effect,	
w,	zero	prob)	

zip_yrFIX_SPDE	 732,158	 	 2.036302	 yes	

p_GLMM_SPDE	 1,170,076	 	 86.09476	 no	(yr,	gear,	intercept),	yes(qtr,	ves_eff,	w)	 	

zip_ar1_SpTmp_25yrs	 688,082	 	 1.728719	 yes(yr,	ves_eff,	w,	ZeroProb)	no(gear,	qtr,	intercept)	

zip_ar1_SpTmp_4season	 702,962	 	 1.867761	 yes	
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Figure	1.	Analysis	area	in	this	study.	

	
Figure	2.	Randomized	quantile	residuals	of	zip_ar1_SpTmp_4season	model.	
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Figure	3.	Randomized	quantile	residuals	of	zip_ar1_SpTmp_4season	model	
summarized	by	year.	

	
Figure	4.	Randomized	Quantile	Residuals	of	zip_ar1_SpTmp_4season	model	in	1994	
and	2018.	
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Figure	5.	Estimated	spatial	field.	

	
Figure	6.	Standardized	CPUE.	Solid	line	denote	standardized	CPUE	using	xx	model.	
Dotted	value	is	the	nominal	CPUE.	
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