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Introduction 

From a sampling-theory perspective, the effective sample size (ESS) is defined as the sample size such that the 

variability from complex sampling designs would be the same as that based on a simple random sample (Pennington 

et al., 2002 and Hulton et al 2011). Estimation of effective sample size is one of the most important issues in stock 

assessment. Effective sample size can be used to show which length composition data sets of each year and quarter 

within and/or between fleets are most reliable. In addition, weighting parameters for length composition data sets for 

ss3 can be determined using effective sample size.  

Length composition data of all fleets as input data using stock assessment model (ss3) was provided in the form 

of catch at size at the Data Preparatory Meeting (ISC12/PBF1) unlike previous stock assessment (ISC8/PBF). 

Estimation method of catch at size for all fleets shares an attribute with each other. The attribute of method is simply 

to raise length data up to catch without statistical model. For this reason, estimation of sample size in catch at size is 

more difficult unlike with raw sample data which were used in previous stock assessment as input length composition 

data for ss3 (ISC8/PBF). Also completely random sampling of length data is considered next to impossible at any 

fleet. So, it is fundamental to estimate effective sample size of length composition as input data for stock assessment 

model (ss3). 

Currently, there are only two fleets, EPO-PS and Japanese Tuna PS, whose estimated effective sample sizes of 

length data are available for stock assessment of PBF. These fleets target at small to medium fish of PBF. There is 

no fleets target at large fish of PBF, for which an estimated effective sample size is available. Length data of fish 

caught by Japanese longline without estimated effective sample size is one of the most important length input data 

for ss3 for two reasons. First, the length data have the second highest number of data set in terms of number of 

period which data is available. It is 83 set (12.5%) for JLL out of 663 sets for all fleets in the base case (where, 1 data 

set corresponds to each year and each quarter). There are only two fisheries that target at large fish of PBF, i.e. JLL 

and TWLL. The latter only have 20 length data sets.  

In this working paper, I estimated effective sample size of length data caught by Japanese longline as to how much 

equivalent sample size can be assumed to random sampling using resampling data through bootstrap method. 

Effective sample size is estimated using ratio of coefficient of variation between frequency of bootstrap and 

observation.  

 

 

Data 

Length data using stock assessment of PBF (ISC12/PBF2) is divided into two periods, 1952-1968 and 1994-2010 

(see ISC12/PBF1/01 for more information). Between these two periods sampling procedures were different 

(ISC07/PBF01/11).  
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Methods 

Bootstrap 

Length data were pooled for each year and month, and resampling was taken from the pooled length data with the 

same number of fish tin the pooled data. 500 sets of resampled data were made from bootstrap. I adopt month for 

the minimum scale (stratum) of pooling and resampling. The reasons are that variance of length is best accounted by 

month within year, month, latitude and longitude and length data of JLL were pooled on the same month and year 

scale as estimating catch at size. (See ISC12/PBF01/01 for more information).  

 

Estimation of effective sample size 

Bootstrap resampled data taken each year and month were pooled for each year and quarter, and then effective 

sample size was estimated based on Kanaiwa et al (ISC08/PBF/01/06). After this, I described a length data each 

year and quarter.      is the number of bins and   is a bin number (        ). Here, total sample size of 

a year and a quarter is                
    
   . And,        is the number of length data included in bin 

  in a year and a quarter. Sample size of data in a year and a quarter obtained by a bootstrap resampling is 

equal to sample size of observation data in the year and the quarter          . Coefficient of variation (CV) 

of frequency of length data expressed variability of each bin and each year and quarter. When it is assumed 

that average of CV of resampling data with bootstrap is equal to CV of population which is length composition 

of PBF caught by Japanese longline, then I can assume that 

                        

          

      

     
 

Here,                     . 

 

 

Results 

 Fig. 1 shows effective sample size (ESS) and sample size of observation each year and quarter. It is indicated ESS 

lower than sample size (average of sample size is 996.2 and average of ESS is 258.68). Difference in ESS between 

data before 1968 and after 1994 was not significant (table 1). As mentioned earlier, the sampling procedures were 

different between these two periods. Fig 2 shows rate of estimated ESS to sample size. This rate is called sampling 

efficiency in this document Calculated total average is 15.8%. Estimated ESS of before 1968 and after 1993 have no 

difference, despite the difference in sampling procedures (Table 1). The average of estimated ESS before 1968 is 

15.3% and that of after 1994 is 16.3%. 

Estimated ESS was plotted to sample size in Fig. 3. Estimated ESS has a strong correlation with sample size (Table 

1) and this correlation has little difference between before 1968 and after 1994. Also there was very little difference in 
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sampling efficiency between before 1968 and after 1994 (Table 2). Sampling efficiency was plotted to sample size in 

Fig. 4. Curve regression was calculated for the relation of sampling efficiency and sample size for each period using 

non-linear least-square method with R. For each period, model selection of four functions was made using AIC. As a 

result, saturation function was selected for data before 1968 and decreasing after saturation was selected for data 

after 1994 (Table 3). These results were almost identical even if the month and year are pooled. 

 

Discussion 

It is revealed that estimated ESS tends to increase as sample size increases. Because this correlation was not 

saturated, increase of ESS needs larger sample size. Average of ESS is around 20% and there is little difference 

between average of ESS before 1968 and after 1994. In contrast, relationship of sampling efficiency and sample size 

is differed between two periods. Increasing sample size saturated sampling efficiency before 1968, but decreasing 

that after 1994 having exceeded the threshold level.  

 After 1994, length of PBF landed in Japan has been measured in an organized way and coverage rate (sample size 

divided by catch in number) increased (covering rate of data before 1968 is 14.5% and that after 1994 is 29.5%). 

However, there was no sign of larger ESS and sampling efficiency after 1994, as expected from a larger coverage 

rate.  

This is probably due to that some data were of extremely low sample size. If the data include a stratum (year and 

month) with low sample size, the difference between two periods may have been clarified. We attempted to analyze, 

excluding small samples for each year and quarter stratum that is the sample size being less than 118 fish (The 

number corresponds to the case that each bin has 5 samples on am average. Observation of data has 23.6 bins 

included sample. 23.6*5=118). Then, average of sampling efficiency was different between before 1968 and after 

1994 8 (before 1968 is 21.3% and after 1994 is 29.5%). 

Second reason of similar values of sampling specifications between two periods could be the distribution shape of 

length composition. If sampling efficiency varies with different complexity of shapes of distributions, for example 

unimodal or bimodal, then average of sampling efficiency may depend on the length composition of PBF for each 

year and quarter rather than sample size. In future, analyses using indicator of shapes of length composition would 

be made.  

 I pooled length data and resampled bootstrap with replication because average of length was most explained by 

month. But accuracy of sampling may not be directly associated with less residual of length average. In a future 

analyses, it should be attempted to pool various scales, i.e. landing port, latitude and longitude, quarter and year, and 

resample. That would help to understand construction of errors. 

Estimated ESS is about 80 on an average. This value is close to ESS of Japanese parse seine (71.6) and 

considerably larger than that of EPO parse seine (15.6). By using estimated ESS of JLL, it is possible to give more 

weight to the length compositions of that fishery in stock assessment model (ss3). See document 

ISC12/PBF02-10for more information on the effect of estimated effective sample size of JLL. 
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Figs and Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Estimated effective sample size (black triangle) and sample size (open circle) each year and quarter. 
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Fig. 2 Sampling efficiency each year and quarter. Open circle is data before 1968 and black circle is after 1994. 
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Fig.3 Estimated effective sample size against sample size. Open circle is data before 1968 and black circle is after 

1994. Thin line is regression line for data before 1968 and Thick line is that after 1994. 
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Fig. 4 Sampling efficiency against sample size. Open circle is data before 1968 and black circle is after 1994. Thin 

curve line is regression line for data before 1968 and Thick curve line is that after 1994. 
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Table 1 statistical results of ANOVA to estimate sample size and effective sample number of length composition each 

year and quarter. The model includes the effect of era (effective sample size). 

Sample number 

Null model 

 Estimate DF Std. error t value Pr(>|t|) 

Intercept 996.2  172.7 5.77 5.18e-08 

 

ESS 

Null model  

 Estimate DF Std. error t value Pr(>|t|) 

Intercept 258.68  43.58 5.936 2.34e-08 

Anova model 

 Estimate DF Std. error t value Pr(>|t|) 

Intercept 301.80  61.64 4.897 2.76e-06 *** 

~1968 and 1994~ -86.25  87.17 -0.989 0.324 

 

Table 2 statistical results of linear regression to estimate sampling efficiency from sample size each year and quarter. 

The model includes the effect of era. 

Sampling efficiency 

Null model  

 Estimate DF Std. error t value Pr(>|t|) 

Intercept 0.238  0.009728 24.48 <2e-16 

Anova model 

 Estimate DF Std. error t value Pr(>|t|) 

Intercept 0.22348 1 0.01369 16.320 <2e-16 *** 

~1968 and 1994~ 0.02928 1 0.01936 1.512 0.133 
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Table 3 statistical results of non-linear least-squares method to sampling efficiency from sample number 

Coefficient of model for data before 1968 

 a b c residual DF AIC 

Model 1 saturated function (exponential) 0.24831 -0.02643 - 0.408 3 -148.9060 

Model 2 saturated function 0.2198 -7.69e+04 - 0.5522 3 -128.3354 

Model 3 saturated function 3.869 80.787 - 0.4181 3 -147.2460 

Model 4 attenuation function 8.259e-05 3.695 9.11 0.411 4 -146.4198 

Coefficient of model for data after 1994 

 a b c residual DF AIC 

Model 1 saturated function (exponential) 0.33786 -0.01993 - 0.5403 3 -129.81178 

Model 2 saturated function 0.2378 -1.151e+04 - 1.107 3 -81.06619 

Model 3 saturated function 2.821 87.521 - 0.5688 3 -126.31740 

Model 4 attenuation function 3.453e-04 2.188 0.01271 0.4838 4 -135.33069 

Function type for Model 1 : y=a*(1-exp(b*x)), Model 2: y~a*(1-x/b), Model 3: y~x/(a*x+b), Model 4: y~x/(a*x^2+b*x+c) 

 


