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Abstract

Existing data for the assessment of North Pacific swordfish stocks are limited. The
available abundance index and catch data contain little information pertaining to
possible population dynamics. Moreover, promised prior information on North Pacific
swordfish is not available. Preliminary results of a Bayesian surplus production model
of the North Pacific swordfish population suggests that the posterior distributions of
means for the intrinsic growth rate and carrying capacity depends on the configurations
of the prior distributions. However, the goodness-of-fits given posterior distributions
are varied. This study develops a model averaging procedure with Bayesian information
criteria (BIC) to account for uncertainties arising from the choice of prior distributions
when data contains little information. Our preliminary results suggest the robustness
of the BIC weighted parameter estimations and constancy with the Bayesian approach.

Introduction

The primary task of fisheries management is to oversee a decision process regarding the
quantity of harvest in a given period, which is based on biological reference points
estimated by a fishery stock assessment. In a stock assessment using Bayesian
methods, explaining alternative biological reference points with heterogeneous
probability distributions is one of the challenges for communicating with fishery
managers and resource users (Punt and Hilborn, 1997). As decision makers, fishery
resource managers and users prefer to have harvest recommendations of a fixed single
number rather than multiple numbers with heterogeneous probabilities. This is
particularly true when there is little applied prior information, and posterior

probabilities among competing hypotheses are almost indistinguishable.

Fisheries stock assessments are often based on time series data of indices of catch and
relative abundance from commercial fisheries, namely catch per unit effort (CPUE).
In some cases, these data lack signals with which to verify the model structure and

induce distinctively informative posterior distributions.

The North Pacific swordfish occupies the area managed by the northern Committee of
the Western and Central Pacific Fishery Commission (WCPFC), and is an economically
valuable resource for both commercial and recreational

fisheries. The International Scientific Committee for Tuna and Tuna-like Species in

the North Pacific Ocean (ISC) is responsible for taking management advice from the
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fish stock assessment.

A number of studies for the stock assessment of swordfish have been conducted.

As of 2008, three assessments on the North Pacific swordfish stock(s) have been done
primarily using catch and CPUE. In 1999, a preliminary surplus production model
was applied (Kleiber, 1999). In 2004, Kleiber and Yokawa (2004) conducted
MULTIFAN-CL assessment, and Wang et al. (2005; 2007) applied a similar model
structure by adding sexual dimorphism data. The latter two studies concluded that
there was a little signal in the North Pacific swordfish fishery CPUE data to estimate
biological functions and stock status (Courtney et al., 2008)

Brodziak and Ishimura (2009) applied the Bayesian surplus state-space model for the
North Pacific swordfish stock assessments by using WinBUG (Bayesian inference Using
Gibbs Sampling). Their preliminary results suggest that 1) the posterior distributions
of means for the intrinsic growth rate and carrying capacity depends on the
configurations of the prior distributions and 2) the goodness-of-fits given posterior
distributions are distinguishable. This would infer the same conclusions as the previous
two stock assessments for the North Pacific swordfish; there is little signal in CPUE

data to induce the stable set of posterior distributions of parameters.

The aim of this paper is to explore the model-averaging technique when a Bayesian
approach hardly detects a signal on fish population dynamics from catch and CPUE data.
This can be achieved by weighting parameters by the Bayesian information criteria
(BIC) of the posterior distributions.

This approach can be considered an analogy of Bayesian decision analysis. First, an
equal probability is assigned for each set of candidate prior configurations for the
parameters. As a primary condition, the possibility that the prior distributions do not
have the same credibility is explicitly excluded. After estimating posterior mode, from
a relative value of BIC, the weighting factors of parameters for each posterior

distribution are calculated, and applied to the model —averaged parameters.

Methods

Full details of the application of the Bayesian surplus state-space model for the North

Pacific swordfish stock assessments are presented in Brodziak and Ishimura (2009).



4 |

These authors employed a three-parameterized surplus production model, with the

intrinsic growth rate (R), carrying capacity (K) and a production shape parameter (M).

B M
(HB, = BT_1+R-BT_1(1—( IT(_IJ ]—CT_I

We adapted a statistical package R with R2WinBUGS to estimate posterior distributions
of parameters which gave us an automatic procedure to test more than one configuration

of prior distributions, R and K.

After estimating the posterior mode of parameters for each configuration of the prior
distributions, a Markov chain Monte Carlo (MCMC) simulation was applied to
numerically sample three chains of length 600,000 from the posterior distribution.
Each chain was thinned by 50 to eliminate autocorrelation and the first 5000 thinned
iterations were excluded to eliminate potential dependence on initial conditions.
Seven thousand iterations were then left for numerical inference using the first chain.
Thinned iterations from the second chain were used to assess convergence of the
MCMC sampling based on the potential scale reduction factor.

For each configuration of the prior distributions of R and K, the likelihoods of the
alternative posterior distributions were compared using the Bayesian information
criterion (BIC) to approximate the Bayes factor of each posterior sample. Then,
averaging the resulting model probabilities based on the difference between the BIC
value for the ith posterior distribution with one with maximized value L for likelihood
function, for a Bayesian surplus production state-space model, p parameters (three for

our model), and n data points were:
(2) BIC, = =2-L + p-log(n)

Each model was assigned an equal prior weight of Pr (i) =1/ m, in which m represents
the total number of configurations of prior distributions, R and K. The exponential of
minus one half times the difference in BIC values between the ith and the best-fitting
model with configuration of prior distributions (@) at the k th iterate (A"’ ) was used to
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approximate the Bayes factor (Bi(ff ), or the relative odds that model with prior

distribution®; versus@, has the best fit.

) B = eXP(‘%(BICf“—BICé“)j = _La

AP
2
The posterior probability that model was the true model under assessment scenario j

(Pr (9,~ I D, ) ) was then calculated from the MCMC samples as

1
s, 1 gl

ZPr B,, 7000;?l

4) Pr(61D,) =

1
ex xp(-0.5A%)

Given the posterior model probabilities, the model-averaged expected values of
parameter estimates (K, or r;), were computed as the weighted average of the four

conditional model expectations:
(5) E,|K;1D;] = S Pe(61D,) E, [K,16,.D; ]
i=1

Similarly, model-averaged variances (V @) of derived parameters such as K; or r; were
computed from the four conditional model variance estimates and expected values as

follows:

V,[K;1D;] =
6) fPr(a.le).{ve[Kj 6., D, ]+ (E,[K,1D,]-E,[K,16, DJ)Z}

These calculations are applied to see the effects of the model averaging procedure for

the Bayesian parameter estimations for each stock scenario.
Results

Arbitrary sets of average K and r for prior distributions are chosen for the model
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averaging procedure. The Bayesian parameter estimation of surplus state-space model
for the North Pacific swordfish stock assessment were carried. For the single stock
scenario, the combinations of K=75, 100,125 and 150 ( 1000 mt) and = 0.5, 0.6,
0.7,0.8,0.9,1.1,1.2 and 1.3 are applied for MCMC estimations.

The numeric results of K and r estimations for the single stock scenario are presented in
Table 1 and 2 respectively. Estimated K are ranged from 63.90 to 80.06 (1000 mt) and
estimated r are ranged from 0.83 to 1.48. Estimated higher Ks are matching with
lower r s which balance of the tradeoff in two mass increment parameters. This
verified that the choice of prior information explicitly influences posterior distributions

and a little signal of biomass index in CPUE time series.

The posterior BIC are presented in Table 4. It has narrow ranges from -267.079 to
-272.176, but still has differences in fit.  Figure 1 shows the weight factor for
averaging parameters, which calculated from these BIC values. Prior pairs with higher
r and lower K induce high weight factors (shown as %). Finally, table 4 presents

model averaged parameters for each scenario.

Concluding remarks

This study is still preliminary and the results suggest our future focus on rather than
unduly aggressive management on the swordfish stock assessment in the North Pacific.
While application of non-informative or vague priors are often used, this model
averaging procedure can be an alternative approach for the Bayesian parameter

estimations in the fishery stock assessments.
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Figure 1. Applied weighting for parameters for the single stock scenario.
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Applied weighting for parameters for Eastern stock of the two stock

Table 1: Average K for the single stock scenario for r and K prior sets.

r
0.5 0.6 0.7 0.8 0.9 141 1.2 1.3
K 75 7139 A6 6 fif A3 A7 26 i 75 fi4 83 fi3 75 3 80
100 7417 7228 71.38 71.00 6913 6745 6717 66.31
125 7813 75 28 75 39 74 85 7313 71 81 fi% B3 7002
150 80.06 7525 75.80 76.60 75.04 7350 71.84 7260
Table 2. Average r for the single stock scenario for » and K prior sets..
r
0.5 0.6 0.7 0.8 0.9 141 1.2 1.3
K 75 050 1.00 1.05 112 1.20 132 140 148
100 057 0.56 1.03 1.08 116 1.31 1.35 1.44
125 085 054 059 1.05 114 125 135 140
150 053 0.51 057 1.05 111 1.25 1.34 1.38
Table 4. BIC for the single stock scenario. for r and K prior sets.
r
05 06 07 0.8 09 11 1.2 1.3
K 75 | -268542 | -268127 | -268853 | -270732 | -270323 | 270088 | -269.738 | 272176
100 | -2A8A72 |-269.668 | -265493 | 269042 [-269.344 | 27104 | 27087 |[-271.898
125 |-966137 [-268598 | 26914 | 269649 [-268546 | 27011 |-270405 [ -271 073
150 |-267515 [-267.079 [ -268002 | 269206 | -26896 [-263341 | 270175 | 27037
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Table 5; Summary of model averaged parameters for the North Pacific swordfish.

Model Averaged Parameters |Single Stock Two Stock NPO|Two Stock EPO
Average K 6870 6297 7499
Average r 123 1.26 045
Average M 093 056 063

5.0 K 25h 5N 1075
SsD.r 070 070 043
5D M 0G5 065 064
BMSY 34.75 d062 34 51
HMSY 0451 0.58 014
MSY 2129 1780 656
PMSY 050 045 045
FMSY 0.4 .38 003
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Appendix
Table 1. Average K for the single stock scenario for r and K prior sets.
r
05 0.6 0.7 0.8 0.9 141 1.2 1.3
K Fi 71.35 58 .68 G863 57.06 G65.75 54 .83 6375 §3.50
100 7417 7229 71.38 71.00 6913 5749 6717 66.31
125 7813 7528 7535 7485 7313 71.81 65983 F0.02
150 80.06 7825 78.80 JEAD 7504 7350 71.84 7260

Table 2. Average r for the single stock scenario for r and K prior sets..

r
0.5 0.6 0.7 0.8 0.9 141 1.2 1.3
K Fi 080 1.00 105 112 1.20 1.32 140 1485
100 057 056 1.03 1.08 116 1.31 1.38 1.44
125 085 0.54 085 1.05 114 1.25 1.35 140
150 053 0.51 0.a7 1.05 111 1.25 1.34 1.38

Table 3. Average M for the single stock scenario for r and K prior sets..

r
0.5 0.6 0.7 0.8 0.9 141 1.2 1.3
K Fi 1.35 1.25 118 1.11 1.05 0.85 0a2 085
100 1.34 1.22 114 110 1.04 042 058 055
125 131 1.22 114 1.06 085 051 087 083
150 1.28 119 112 1.04 1.00 0.59 054 051

Table 4. BIC for the single stock scenario. for r and K prior sets.

r

0.5 06 0.7 0.8 09 1.1 1.2 1.3

K 75 —268.542 | -26B127 | —2G8.855 | —FT0.T32 | -270323 | 2700588 | 265735 | 272176

100 —268672 | -26B668 | —268495 | —PE9.042 | 285344 | 2104 | —2T09T | —271 830

125 —268137 | 268588 | —P6814 | -269.648 | -268546 | 27011 | 270405 [ 271 073

150 —2E7515 | 267078 | -PEROR2 | —P60.206 | —PGE86 | -PE334 | -2V0175 | —PT0.STY

Table 5. Parameter weight calculated from BIC for the single stock scenario. for r and K

prior sets.
r
05 0.6 0.7 0.8 09 141 1.2 1.3
K 75 1.55% 2.07% 2.98% 4.62% 3.77% 3.35% 281% 551%
100 1.65% 271% 2.46% 1.58% 231% 5.36% 5.20% 5.28%
125 1.06% 1.59% 2.08% 2 B9% 155% 3.39% 3.82% 5 48%
150 0.83% 074% 1.97% 2.16% 181% 231% 350% 3.86%
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Table 6. Average K for the two stock — Northern stock scenario for r and K prior sets.

r

K 0.7 0.8 0.9 11 1.2 1.3 1.4
25 §3.00 G215 g2.09 6112 G053 G051 o946
20 JO&9 G963 G897 6773 G759 G657 6785
75 J610 7430 T356 T2 T205 71584 7151
100 7843 7781 JI160 J6 .06 7585 7488 7486
125 g§2.27 5157 50.05 7961 7547 7787 7583

Table 7. Average r for the two stock — Northern stock scenario for r and K prior sets.

r
0.7 0.8 0.9 11 1.2 1.3 1.4
K 25 0HE 1.02 1.08 1.20 125 1.53 1.35
20 .80 086 1.02 115 119 128 1.1
75 087 082 089 112 117 123 1.1
100 054 0.80 086 1.08 115 123 1.28
125 082 089 085 1.06 114 118 1.27

Table 8. Average M for the two stock — Northern stock scenario for r and K prior sets.

r
0.7 0.8 0.9 11 1.2 1.3 1.4
K 25 118 110 1.1 083 .81 0e2 080
20 1.08 1.02 087 086 083 07a 0.73
75 1.04 089 083 082 07a 07s 0.70
100 1.03 086 0.80 0.81 076G 072 069
125 1.00 083 088 078 073 072 0465

Table 9. BIC for the two stock — Northern stock scenario for r and K prior sets.

r

0.7 0.8 0.9 11 1.2 1.3 1.4
K 25 —27R 582 | —2TG42 |27V H30 | -ETEA08 | -278 228 | —ZE05G2 | —280.204
20 —273.087 | -PTASEE | 27413 | 27486 |-276.704 | -PTVGEED | 276251
75 —27085 | -2TEA3E (2T .16 | 275261 [-EV3TTE | 275024 [ -2T4224

100 —2G9.783 | —P609.031 | -2T1 865 | 272854 | 271 841 | 272827 | —275.554

125 —2G8.17 | 26008 |-2634531 | -260.798 |-272021 | -2 31T | 272412

Table 10. Parameter weight calculated from BIC for the two stock — Northern stock

scenario for r and K prior sets.

r
0.7 0.8 0.9 11 1.2 1.3 1.4
K 25 2.0% 3.0% 1% g.9% 121% 29.7% 20.7%
20 0.5% 1.2% 0.8% 1.4% 3.6% 3.7% 2.8%
75 02% 04% 0.3% 1.7% 0.8% 1.5% 1.0%
100 01% 01% 0.3% 0.5% 0.3% 0.5% 0.6%
125 0.0% 01% 01% 01% 0.53% 0.2% 0.53%
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Table 11. Average K for the two stock — Eastern stock scenario for » and K prior sets.

r

03 0.4 0.5 0.6 0.7 08 09

K 75 6415 61.33 6123 60.80 5826 5855 5835
100 7058 §58.48 G729 G512 G572 G5.85 §5.21

125 76.60 7365 7242 7125 70594 7051 7088

150 8112 78.08 7679 7e7 7652 7ei2 7614

175 8522 g§3.95 80587 20.04 53.80 8054 7943

200 9315 g7.38 g5.77 g4 56 g4.21 §3.65 g4.51

225 2482 92 .68 8867 91 96 8823 86.99 22.21

Table 12. Average r for the two stock — Eastern stock scenario for r and K prior sets.

r

03 04 05 0.6 0.7 0.8 0.9

K 75 030 0.38 043 049 056 062 063
100 029 0.36 043 043 05§ 041 048

125 029 0.36 042 049 055 061 087

150 028 0.35 042 048 054 061 067

175 028 035 0.4 047 0E55 061 066

200 0E7 0.3% 040 043 054 080 085

225 027 0.34 041 047 054 060 066

Table 13. Average M for the two stock — Eastern stock scenario for r and K prior sets.

r

03 04 05 0.6 0.7 0.8 0.9

K 75 088 086 075 Q&7 Q60 055 049
100 0.85 083 Q.71 053 057 052 043

125 083 0.79 059 Q&0 055 Q50 046

150 0.80 Q.77 066 Q&1 054 048 045

175 087 078 055 Q80 050 047 044

200 0.86 0.74 064 057 051 046 042

225 085 072 052 054 050 045 040

Table 14. BIC for the two stock — Eastern stock scenario for r and K prior sets.

r
03 0.4 0.5 0.6 0.7 0.8 09
K 75 1074 | 10687 | 10711 | —10680 | 10653 | 10745 | -107 65
100 10668 | 10672 | 10737 | 10702 | 107463 | 10714 | 10744
125 10686 | 10688 | 10734 | 10740 | 10748 [ 10770 | 10723
150 10687 | 10828 | 10711 | 10709 | 10687 [ 10691 | 10665
175 10583 | 10681 | 10666 | —10678 | 10641 | —10684 | -106.75
200 10627 | 10661 | 10618 | 10688 | 10667 | 10720 | -10643
225 10465 | 105356 | 10700 | 106826 | 10703 [ 10640 | -10559

Table 15. Parameter weight calculated from BIC for the two stock — Eastern stock

scenario for r and K prior sets.

r
03 0.4 05 06 0.7 0.8 0.9
K 75 265% 203% 229% 2 06% 1.71% 269% 3.04%
100 1 .84% 1.88% 2.60% 218% 287 2.32% 2.859%
125 2.02% 2.04% 256% 264% 2.75% 3.08% 2.43%
150 2.03% 151% 229% 2.26% 213% 207% 1.82%
175 1.27% 207% 182% 1584% 161% 2.00% 1.84%
200 1504 1.78% 1.44% 2.04% 1.84% 2.39% 1.62%
225 067% 085% 216% 1.49% 2.20% 1 60% 1.07%




