Updated CPUE standardization for adult North Pacific albacore caught by Japanese longline fishery from 1996 to 2021: the GLMM analysis using STAN

Jun Matsubayashi, Hirotaka Ijima, Naoto Matsubara Yoshinori Aoki and Yuichi Tsuda

Fisheries Research Institute, Japan Fisheries Research and Education Agency Fukuura 2-12-4, Yokohama, Kanagawa, Japan.

Email: Matsubayashi_jun86@fra.go.jp

This working paper was submitted to the ISC Albacore Working Group Intercessional Workshop, 6-12 December 2022, held at the Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kanagawa, Japan.

Summary

As per the working group's request, we calculated adult abundance index (i.e. standardized CPUEs) of albacore from operational data reported by Japanese longline fisheries using the same procedures and assumptions of previous study (Fujioka et al., 2019) as a backup data for stock assessment in 2023. In order to keep the same area and quarter delineation as the previous stock assessment, the data used were quarter 1 in the Area 2 from 1996 to 2021 and generalize liner mixed model analysis with Bayesian inference was used for the CPUE standardization. The result showed similar trends with the previous CPUE, suggesting that the estimated CPUE is considered reasonable as a backup to the previous one.

Introduction

At the International Science Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC) Albacore Working Group Assessment Improvement Meeting on May 9-13, 2022, Japan proposed the use of the new Japanese longline fleet definition and the calculation of standardized CPUE using a geostatistical model as an adult abundance index of the north Pacific albacore (*Thunnus alalunga*) stock (Ijima et al. 2022). In response to these proposals, the Working Group requested that two types of standardized CPUE data be produced in case the new fleet definition and geostatistical model are not used in the 2023 stock assessment. One is data using the geostatistical model and the other is backup standardized CPUE data estimated using exactly the same method as in the previous stock assessment (Ochi et al. 2017; Fujioka et al. 2019).

In this document, standardized CPUE for the adult abundance index of albacore were calculated for data from 1996 to 2021 using the same method as Fujioka et al. (2019) as backup data, and the trends of the standardized CPUE were compared with the previous results in 2019. In the previous stock assessment, the abundance index of adult albacore was based on longline fisheries data of quarter 1 in the Area 2 (Fujioka et al. 2019; Fig. 1), while that of juvenile albacore were obtained from the data of pole-and-line (ref). Fujioka et al. (2019) calculated the standardized CPUE by using the generalized liner mixed with Bayesian inference methods from Japanese longline fisheries data, which was originally proposed by Ochi et al. (2017).

Data and Methods

Updated data, definitions of data period, area and quarter for adult abundance index

The dataset for longline operations includes the number of albacores caught in each operation, year, quarter, fleet location type (Distant, Offshore, Coastal), hooks per basket,

[ここに入力]

totals hooks and vessel ID. We updated the data for the period 1976-2021 and tabulated them with the number of records and albacore catches for each year and compared them to the previous one (Fujioka et al., 2019; Table 1). As the summary of the data, decadal spatial distributions of albacore catch, effort (number of hooks) and nominal CPUE (catch/effort*1000) are shown in Fig. 2.

For the 2019 stock assessment, standardized CPUE calculated using data since 1996 were used as inputs to the resource assessment model. This is because the method of collecting logbook data for Japanese longline has changed since 1994, and stable data with the new collection methods is considered to have been available since approximately 1996 (Ijima et al. 2017; Ochi et al., 2017; Fujioka et al., 2019; ISC 2019).

In the previous stock assessments, the definition of the area and quarter that best represent the abundance index of adult albacore was determined by considering the migration patterns of this species (Fig. 1a). Based on the catch at length frequency recorded in the longline fishery operating areas, Area 2 had larger fish (adults) regardless of quarters in the catch at length data compared to the other area (Ijima et al., 2017). In addition, previous stock assessment focused on quarter 1 of Area 2 which has with higher albacore catches compared to other the quarters (Fujioka et al. 2019; Table 2).

In addition to the data definitions described above, we excluded data where the fleet location type was Distant and hooks per basket is smaller than 10 in order to extract only fisheries targeting albacore, which are the same operations used in the previous stock assessment.

CPUE standardization

Details of the statistical methods used in this study for estimating standardized CPUE can be found in Ochi et al. (2017). Briefly, a generalized linear mixed model assuming zero-inflated negative binomial error distribution was adopted for the estimation of the standardized CPUE and coefficient of variation (CV). Year, hooks per basket, fleet type (offshore or coastal) for each operation were set as fixed effects, and vessel name and location of operation (rounded to the nearest 5 degrees of latitude and longitude) were set as random effects. Posteriors and predicted standardized CPUE were calculated with the variational Bayesian method (Automatic differentiation variational inference; ADVI), and 95% Bayesian credible interval and CV of standardized CPUE could be calculated from *lsmean* based on the posteriors. We used R 4.0.2 for data processing and summarizing the estimation output, and Stan 2.18.2 (http://mc-stan.org/) for parameter estimation by ADVI. The ADVI algorism maximizes its lower bound of marginal likelihood (ELBO) by automatic differentiation. The standardized CPUE

computed an expected value that followed a negative binomial distribution and did not account for the zero-catch probability. Technically, the positive catch rate, estimated by a linear regression model of the Bernoulli distribution, was not multiplied.

Results and Discussion

The standardized CPUE calculated in this document was similar to Fujioka et al. (2019: Figure 3), but was slightly higher overall throughout the 1996-2017 period. Our estimates are rather closer to Ochi et al. (2017) than to the previous stock assessment. Updated standardized CPUE for each year of 2019-2021 were 32.1, 16.5, 38.5, respectively. With the data summary, calculated standardized CPUEs, fitted value of the GLMM and Pearson residuals of adults were illustrated in Figure 4. Calculated values of standardized CPUEs and CVs for both adult and juvenile abundance indices were given in Table 3.

Similar to Ochi et al. (2015) and Fujioka et al. (2019), standardized CPUE was considerably high compared with nominal CPUE in this study (mean value of 36.7 for standardized CPUE compared to 19.5 for nominal CPUE). This is due to the fact that the data generated based on a negative binomial distribution were not taken into account when calculating the standardized CPUE. In other respects, the trends of variation in nominal CPUE and standardized CPUE were almost identical, suggesting that the data were uniform and not biased toward specific fishing vessels or operating locations.

Reference

- Ijima, H. Ochi, D. and Kiyofuji, H. (2017) Estimation for Japanese catch at length data of North Pacific albacore tuna (*Thunnus alalunga*). ISC/17/ALBWG/04.
- ISC (2017) Stock assessment of albacore tuna in the north Pacific Ocean in 2017. Report of the albacore working group, 12-17 July 2017, Vancouver, Canada.
- Ochi, D., Ijima, H. and Kiyofuji, H. (2017) Abundance indices of albacore caught by Japanese longline vessels in the North Pacific during 1976-2015. ISC/17/ALBWG/01
- Fujioka, K., Ochi, D., Ijima, H., Kiyofuji, H. (2019) Update standardized CPUE for North Pacific albacore caught by the Japanese longline data from 1976 to 2018. ISC/19/ALBWG-02/01.

(b)

Figure 1. (a) A schematic model of immature and adult albacore (*Thunnus alalunga*) migration routes and the five areas used in the 2017 stock assessment. (b) An area definition for Japanese longline fishery.

Figure 2. Decadal spatial distributions of (a) albacore catch, (b) effort (number of hooks), and (c) CPUE (catch/effort*1000) that were aggregated by 5×5 degrees in the all area during 1976-2021.

Figure 3. Comparison of two standardized CPUEs with 95% Bayesian credible interval (blue; Fujioka et al. 2017, red; the present study) and nominal CPUE (black) in area 2.

Figure 4. Data summary and CPUE standardization results for the data from 1996 to 2021 for area 2 in quarter 1. Distribution of albacore catch (top left), annual change in hooks per basket (top right), frequency of fleet type (middle left), nominal and standardized CPUE and 95% Bayesian credible interval (blue shaded area; middle right), scatter plot of GLMM fitted values and Pearson residuals (bottom left) and distribution of Pearson residuals for each year (bottom right).

		Number o	f total record	S	Number of ALB catches						
_	Year	Fujioka et al. (2019) This study		Difference	Fujioka et al. (2019)	This study	Difference				
	1976	184952	184952	0	881781	881781	0				
	1977	183284	183284	0	836220	836220	0				
	1978	184291	184291	0	723254	723254	0				
	1979	220229	220229	0	952351	952351	0				
	1980	236820	236820	0	990846	990846	0				
	1981	246888	246888	0	1422739	1422739	0				
	1982	223291	223291	0	1289776	1289776	0				
	1983	200810	200810	0	1217265	1217265	0				
	1984	211832	211832	0	1180879	1180879	0				
	1985	204778	204778	0	1145105	1145105	0				
	1986	202123	202123	0	1064261	1064261	0				
	1987	195750	195750	0	1013851	1013851	0				
	1988	195092	195092	0	1124801	1124801	0				
	1989	193051	193051	0	994689	994689	0				
	1990	187018	187018	0	1139052	1139052	0				
	1991	190861	190861	0	1080452	1080452	0				
	1992	177520	177520	0	1158391	1158391	0				
	1993	173546	173546	0	1489594	1489594	0				
	1994	213174	213174	0	2315490	2315490	0				
	1995	215780	215780	0	2315871	2315871	0				
	1996	209736	209736	0	2373051	2373051	0				
	1997	201354	201354	0	2681323	2681323	0				
	1998	198817	198817	0	2732157	2732157	0				
	1999	179480	179483	3	2225648	2225710	62				
	2000	178368	178368	0	2029797	2029797	0				
	2001	180748	180748	0	2122987	2122987	0				
	2002	171149	171149	0	1987395	1987395	0				
	2003	171374	171374	0	1770829	1770829	0				
	2004	165426	165496	70	1798401	1798411	10				
	2005	155365	155371	6	2147369	2147374	5				
	2005	147553	147553	0	2131829	2131829	0				
	2007	138882	138882	0	2071064	2071064	ů 0				
	2008	132954	132954	0 0	1831252	1831252	ů 0				
	2009	123737	123737	0	1951172	1951172	ů 0				
	2010	123719	123720	1	1973829	1973846	17				
	2010	115712	115858	146	1956577	1957561	984				
	2012	112077	112077	0	2390665	2390665	0				
	2012	102692	102692	0	2084455	2084455	0				
	2013	95/131	95/31	0	1862206	1862206	0				
	2014	88576	88576	0	1863047	1863047	0				
	2015	86005	86005	0	1/25110	1/85110	0				
	2010	0070J 81049	0090J 01040	0	1403117	1403117	0				
	2017	01700	01908	575	143/119	143/119	5026				
	2018	10302	10701	515	12137/3	1221001	3020				
	2019	-	82207	-	-	1004014	-				
	2020	-	03227 71521	-	-	1203331	-				
	2012.1	-	11121	-	-	17/17/4	-				

Table 1. An overview of Japanese longline operation data since 1976 as updated in thisstudy and data used in the 2019 stock assessment (Fujioka et al. 2019)

[ここに入力]

v	Area 1			Area 2			Area 3			Area 4			Area 5							
rear	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1976	22,093	1,609	0	443	61,073	4,467	21,316	33,207	48,590	26,424	22,719	121,570	73,027	4,544	5,321	17,239	42,123	1,180	342	114,783
1977	41,920	511	4	1,076	107,974	2,003	3,057	18,716	39,767	23,312	7,316	94,868	69,244	4,695	5,431	29,004	24,638	25	705	96,223
1978	4,131	995	3	1,450	42,164	2,767	6,306	13,754	28,559	18,469	14,784	99,857	146,830	9,903	11,201	16,809	8,040	0	2,947	50,185
1979	8,709	1,158	0	1,535	47,523	4,383	9,170	19,457	72,444	31,139	35,270	157,769	119,012	12,734	4,764	32,141	56,977	273	1,838	66,199
1980	22,819	4,500	0	403	65,186	5,185	8,912	33,584	22,756	16,683	32,665	139,502	114,365	10,475	5,579	24,940	26,505	250	446	176,981
1981	18,439	365	0	5,282	71,589	11,584	53,601	49,171	50,502	27,993	66,289	185,447	165,235	20,184	11,718	35,705	56,798	1,679	5,919	154,123
1982	46,355	1,364	0	557	79,716	21,329	22,851	15,969	70,093	66,309	72,287	168,803	170,441	32,490	9,428	15,650	85,764	580	2,765	64,914
1983	34,685	3,644	92	965	28,576	32,745	32,367	34,410	54,898	75,903	56,306	150,786	98,021	18,806	6,884	22,118	39,423	1,477	3,789	138,081
1984	18,483	1,006	52	1,594	41,897	35,661	38,900	17,784	34,235	55,699	52,957	141,089	88,175	12,979	4,146	8,640	115,686	144	3,390	155,401
1985	31,681	966	1	4,214	19,461	28,733	38,425	13,441	35,097	54,512	53,263	162,338	37,535	15,826	6,907	22,193	94,875	101	512	146,060
1986	31,109	1,203	2	1,703	41,944	12,040	48,796	10,965	35,634	69,363	62,145	102,379	96,505	20,521	11,682	11,198	39,183	366	941	51,231
1987	25,632	1,154	0	6,399	25,151	5,027	34,158	19,957	20,600	66,243	70,905	168,654	34,008	8,034	9,496	10,158	41,284	4,259	2,624	110,735
1988	28,707	3,808	50	1,135	39,813	6,150	63,338	28,154	46,295	81,862	58,036	158,408	33,591	13,909	25,925	13,137	43,142	737	836	106,743
1989	23,807	4,395	0	232	37,953	9,022	66,586	11,536	46,929	87,974	94,885	130,764	36,908	17,499	16,890	20,810	76,411	2,070	417	65,409
1990	35,282	4,334	0	1,368	37,421	1,379	66,909	9,013	50,833	69,396	90,853	173,334	49,481	13,282	40,946	10,581	98,603	593	1,653	89,268
1991	26,523	5,570	173	2,424	27,767	2,071	43,111	9,181	47,542	54,446	63,344	147,044	51,606	16,859	18,439	14,287	124,289	2,204	2,170	104,367
1992	28,841	10,790	1	825	15,280	3,531	46,192	10,681	36,682	74,942	47,192	214,459	54,470	5,670	38,543	24,378	41,448	3,389	1,089	145,462
1993	80,438	24,927	6	2,469	38,123	10,837	80,658	26,189	55,610	81,008	90,403	217,997	103,721	12,518	45,533	22,134	61,438	654	154	175,796
1994	407,255	150,738	753	38,071	109,639	41,831	85,039	101,689	116,431	105,194	46,174	315,008	81,755	21,067	48,306	42,652	65,135	0	4	60,285
1995	378,821	113,971	2,287	63,956	197,909	52,751	62,632	74,754	73,852	114,278	100,587	320,372	101,466	52,243	35,817	49,458	53,046	910	67	45,512
1996	390,166	178,129	637	37,194	169,052	50,394	65,693	111,021	55,871	162,759	75,604	315,815	109,943	44,702	38,226	40,963	55,328	0	521	61,169
1997	574,001	180,547	2,521	53,535	147,870	52,617	123,683	72,583	56,621	170,912	76,163	297,636	135,142	31,637	28,136	41,246	45,074	450	1,667	63,918
1998	511,038	147,799	2,563	68,032	210,539	61,182	65,655	76,276	45,839	130,997	109,600	304,693	92,521	32,475	84,039	37,746	10,529	0	1,897	57,130
1999	338,963	130,243	3,167	83,792	144,651	43,285	46,997	104,189	81,159	54,904	115,357	304,614	71,628	42,068	27,348	31,984	31,557	0	3,052	41,688
2000	360,431	141,704	3,067	29,550	242,865	109,287	70,915	97,231	37,579	51,398	23,633	152,877	86,949	16,415	13,410	56,408	5,492	0	40	12,628
2001	217,689	119,300	1,416	29,033	235,460	108,846	37,785	65,320	24,009	43,285	61,905	191,759	100,609	28,229	69,970	47,364	15,890	0	357	47,068
2002	422,574	103,496	2,375	25,523	154,656	53,982	14,583	43,709	56,187	93,495	44,888	118,201	131,683	23,525	27,872	16,387	6,278	0	9	13,149
2003	377,192	106,264	857	32,780	187,300	46,074	39,714	47,538	40,264	119,045	82,392	147,028	35,118	5,206	40,962	8,155	1,199	0	81	17,324
2004	291,285	59,028	1,128	26,/57	104.050	38,248	27,441	41,597	29,795	120,657	122,258	149,565	38,594	5,698	30,764	22,631	4,/96	14	80	3,831
2005	248,545	/1,355	2,780	26,873	104,059	58,168	36,274	58,546	75,297	306,698	81,427	121,146	52,152	15,227	/0,5/0	10,502	193	2	131	12,651
2006	292,175	124,868	851	25,498	130,585	04,528 71,016	33,440	45,426	210.842	215,100	13,157	212,135	30,624	32,770	18.020	1,249	1,188	14	331	1,3/3
2007	226.241	90,039	1.009	49,158	109,948	07,252	56,495	23,290	117 441	149.007	23,302	121 202	40,820	2,050	10,959	4,230	1,650	0	1,000	2 279
2008	220,241	120.854	1,998	25,017	127,204	97,552	33,025 48,220	25,597	117,441	148,097	32,928	121,295	12 502	2,939	20,470	2 0 2 5	1.027	1	501	2,278
2009	210,020	56.072	002	21 724	205.021	160.062	40,329	29,000	71 975	121.679	20,586	162 240	12,595	0.945	16 642	12 156	77	1	80	52
2010	282 120	60 470	710	52.742	150 177	111.078	22,972	42 012	26.902	01 559	52.042	240 121	20,668	22 500	47.011	11,006	12	0	2 857	2077
2011	534.050	88.461	165	16.872	138,526	110,078	13751	43,913	61 731	1/18 120	30 1/10	170.826	29,008	18 442	1/1 3/18	17 363	0	415	/03	2,077
2012	222.092	77 119	460	24.002	111 929	119,478	45,751	25,600	44.044	07 502	20 157	160 711	20,014	17,102	14,348	7 800	0	122	495	0.152
2015	329 379	84 123	-400	55 816	83 362	107.078	62 311	56 244	33.862	151 167	23,157	210.275	22,210	9.830	27.030	3 678	1433	0	884	0
2014	383 488	24.441	176	59.904	183 252	107 341	60.741	48 583	45 678	199.469	39.425	129 552	8.429	8 245	28,692	2 129	0	126	242	102
2015	167 523	34 683	1 270	45 456	102 354	143 304	49 290	47 489	120.059	175 523	20,276	82 248	10.485	3.433	20,092	436	0	0	6	2
2010	230 524	39 322	427	34 820	102,354	94 367	75,000	99.947	71 991	149.095	14 227	58 209	4 798	4766	30,762	1 654	0	0	5	386
2019	126 165	10 155	250	21.621	139.986	122 569	56 388	61 623	46.671	36744	23 245	48 715	4 943	1 977	5,000	3.077	0	0	11	19
2019	93.548	12.886	718	23.961	133.870	92.655	47.508	23.982	80.457	72.677	19.161	80,896	5,500	11,410	14.215	2,989	111	0	1.951	6
2020	138.922	12,715	2.690	29.943	48.126	48.077	48.857	45,579	205.704	126.226	15.033	96.962	10.809	8,791	20.932	757	6	82	108	28
2021	207 782	37.606	897	25.452	113 258	87.621	76256	40 553	160 398	28.930	25 126	89 155	2 123	6.280	12.065	737	1.692	0	72	4 359
2021	1 201,102	57,000	077	20,102	110,200	57,021	.0,200	10,000	100,090	20,000	20,120	57,200	2,125	0,200	12,000		1,072	ÿ	12	

 Table 2 Annual albacore catches by quarter in each area. Quarters with the highest albacore catch in each year and area are highlighted.

	Fujioka et	al. 2019	This study						
	Area 2, Q	uarter 1	Area 2, Quarter 1						
Year	Std CPUE	CV	Std CPUE	CV					
1996	43.15	0.09	45.48	0.09					
1997	50.04	0.10	51.92	0.09					
1998	50.61	0.10	54.40	0.08					
1999	38.51	0.10	40.08	0.09					
2000	53.04	0.10	54.94	0.08					
2001	47.35	0.10	49.71	0.08					
2002	31.99	0.10	33.52	0.08					
2003	35.64	0.10	37.27	0.08					
2004	25.64	0.09	26.41	0.09					
2005	33.39	0.10	35.13	0.08					
2006	36.33	0.09	38.10	0.08					
2007	31.75	0.11	33.34	0.08					
2008	33.18	0.11	35.53	0.09					
2009	34.45	0.09	35.81	0.09					
2010	40.30	0.11	42.37	0.09					
2011	31.30	0.11	32.24	0.08					
2012	31.34	0.09	32.92	0.09					
2013	29.24	0.10	30.38	0.08					
2014	22.75	0.11	23.81	0.09					
2015	41.26	0.09	42.58	0.08					
2016	25.92	0.10	26.56	0.09					
2017	27.33	0.11	29.44	0.09					
2018	31.02	0.10	34.36	0.08					
2019	-	-	32.07	0.08					
2020	-	-	16.46	0.09					
2021	-	-	38.53	0.09					

Table 3 Abundance indices for albacore caught by Japanese longline fisheries in Area 2 between 1996 and 2021 estimated in this study compared to the previous stock assessment (Fujioka et al. 2019).