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Summary 

This study performed CPUE standardization of adult North Pacific albacore based 

on Japanese longline fishery operational data using geostatistical model and compared 

the results with that of previous study using WAIC obtained from Bayesian estimation. 

The main difference between these models is that the previous study incorporated spatial 

and temporal effects into the model as random effects, whereas this study incorporated 

these effects by spatiotemporal models with the Stochastic Partial Differential Equations 

(SPDE) approach. These models were intended to model albacore catch using year effect, 

location effect, hooks per basket, fleet type and vessel name. The results of model 

selection revealed that the application of SPDE significantly improves the performance 

of model (WAIC reduced by 63.6% in SPDE model) to standardize CPUE of albacore. 

In addition, we compared several models with different error distribution and with and 

without some explanatory variables (hooks per basket and fleet type) to search for the 

best model. The result of model selection showed that a spatiotemporal model with a zero-

inflated negative binomial error distribution and incorporating all explanatory variables 

is the best model for CPUE standardization of adult North Pacific albacore. 

 

Introduction 

In North Pacific albacore (Thunnus alalunga) stock assessments, stock abundance 

indices (i.e., standardized CPUE) based on catch data from longline fisheries have been 

used as input data for stock synthesize models (ISC 2020). The standardized CPUE has 

been estimated by GLMM, which incorporates time and space effects as random effects 

(Ochi et al. 2017, Fujioka et al. 2019). However, this method ignores the fact that data 

closer in time and distance will have a greater correlation with the number of catches. For 

this reason, CPUE standardization using geostatistical models that account for spatial 

autocorrelation using the Stochastic Partial Differential Equations (SPDE) approach have 

recently been applied in the field of fisheries resource management (Ijima and Koike 

2021). Thus, this study aims to compare the model for CPUE standardization used in the 

previous stock assessment of albacore (Fujioka et al. 2019) with standardized CPUE 

estimated by geostatistical model. 

Commonly used spatio-temporal models in fisheries science that implement the 

SPDE approach are Integrated Nested Laplace Approximation (INLA; Rue et al. 2019) 

and Vector Autoregressive Spatio-Temporal Model (VAST; Thorson 2019). These models 

differ in terms of what criteria can be calculated as indicators of the model's performance; 

VAST can only calculate Akaike Information Criterion (AIC), whereas INLA can 

calculate various indicators such as Widely Applicable Information Criterion (WAIC; 



Watanabe and Opper 2010) and Leave-One-Out Cross Validation (LOOCV). AIC is a 

commonly used indicator for model selection when using GLMM, but it does not work 

for complex models with hierarchical structure like spatio-temporal model (Watanabe and 

Opper 2010). On the other hand, WAIC was developed to compensate for the weakness 

of AIC and can be applied to even the most complex models. Since one of the main 

objectives of this study is to compare the model for CPUE standardization used in past 

resource assessments (e.g. Ochi et al. 2017, Fujioka et al 2019) with that of geostatistical 

models, we conducted our analysis using INLA, which is capable of calculating WAIC. 

Then, we provide annual trends of the standardized CPUE using the best fit model for 

potential use as input data for stock assessment model. 

 

Data and Methods 

Longline logbook data 

The dataset for longline operations includes the number of albacores caught in each 

operation, date, quarter, fleet location type (Distant, Offshore, Coastal; hereafter fleet), 

hooks per basket (hpb), totals hooks and vessel ID from 1976 to 2021. The latitude and 

longitude of all data were recorded in units of one degree, and data taken in the same year, 

month, vessel, hpb, and latitude and longitude were summed up to reduce the amount of 

data. In order to focus on albacore fishery, data where the fleet location type was Distant 

and hooks per basket is smaller than 10 were preliminary excluded. Previous studies 

found that Area 2 (see Fig. 1) had larger fish (adults) regardless of season based on the 

catch at length data (Ijima et al., 2017) out of 5 main fishing Areas of albacore in the north 

Pacific (Ochi et al. 2016). In addition, the method of collecting logbook data for Japanese 

longline has changed since 1994, and stable data with the new collection method are 

considered to have been available since approximately 1996 (Ijima et al. 2017; Ochi et 

al., 2017; Fujioka et al., 2019; ISC 2019). For this reason , data from Area 2 and Quarter 

1 since 1996 were used fort CPUE standardization to extract data most represent 

abundance of adult albacore. 

 

Generation of INLA mesh 

First, we converted the location of each data presented in latitude and longitude units 

into degrees from meter unit so that the distance of each data would be correctly reflected 

in the analysis. In order to perform modeling with INLA, it is first necessary to generate 

a mesh to create an artificial neighborhood set on the study area and calculate the spatial 

autocorrelation between data points. In creating the mesh, we must set the max.edge and 

cutoff values; the max.edge determines the largest allowed triangle length of the mesh 



and the cuttoff value defines the minimum allowable distance between points. Higher 

resolution is obtained with lower max.edge value, whereas that increase the 

computational time. Thus, the value of max.edge is determined by a trade-off with the 

computation time. Since points within the cutoff value are replaced by a single vertex 

prior to the mesh refinement step, smaller cutoff value yields higher-resolution mesh, but 

it also needs to be set in a trade-off with the computation time. In this study, the mesh was 

created with a max.edge of 500 and cutoff value of 170 (Fig. 2). 

 

Reconstruction of iid model 

The model used by Fujioka et al. (2019) in the previous stock assessment 

incorporated the effect of location as independent random effect (iid). For this reason, we 

refer to this model as iid model. The model structure of iid model was as follows: 

 

𝐶𝑃𝑈𝐸𝑎𝑙𝑏  ~ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑦𝑒𝑎𝑟 + 𝑓𝑙𝑒𝑒𝑡 + ℎ𝑝𝑏 + 𝑓(𝑣𝑒𝑠𝑠𝑒𝑙 𝐼𝐷, 𝑚𝑜𝑑𝑒𝑙 = 𝑖𝑖𝑑) + 

𝑓(𝑙𝑎𝑡𝑙𝑜𝑛, 𝑚𝑜𝑑𝑒𝑙 = 𝑖𝑖𝑑) + 𝑜𝑓𝑓𝑠𝑒𝑡(ℎ𝑜𝑜𝑘𝑠/1000) 

 

where 𝐶𝑃𝑈𝐸𝑎𝑙𝑏 is estimated standardized CPUE for albacore, 𝑙𝑎𝑡𝑙𝑜𝑛 is the location of 

operation rounded to the nearest 5 degrees of latitude and longitude and 𝑚𝑜𝑑𝑒𝑙 = 𝑖𝑖𝑑 

represents variable incorporated as random effect. All explanatory variables were 

incorporated into the model as categorical variables. The response variable was assumed 

to follow negative binomial distribution, and the number of hooks divided by 1000 was 

used as an offset term to unify the amount of effort. Although Fujioka et al. (2019) 

constructed the model using RSTAN package (Stan Development Team 2022) in R, this 

study implemented the iid model using R-INLA to calculate WAIC and LOOCV. 

 

Generation of SPDE models 

Unlike the iid model, geostatistical model treats the effect of location through the 

SPDE approach, and thus we refer to this model as SPDE model. The structure of SPDE 

model with all explanatory variables (full model) is as follows: 

 

𝐶𝑃𝑈𝐸𝑎𝑙𝑏  ~ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑦𝑒𝑎𝑟 + 𝑓(𝑓𝑙𝑒𝑒𝑡, 𝑚𝑜𝑑𝑒𝑙 = 𝑖𝑖𝑑) + 

𝑓(ℎ𝑝𝑏, 𝑚𝑜𝑑𝑒𝑙 = 𝑖𝑖𝑑) + 𝑓(𝑣𝑒𝑠𝑠𝑒𝑙 𝐼𝐷, 𝑚𝑜𝑑𝑒𝑙 = 𝑖𝑖𝑑) + 

𝑓(𝑤, 𝑚𝑜𝑑𝑒𝑙 = 𝐴𝑅1) + 𝑜𝑓𝑓𝑠𝑒𝑡(ℎ𝑜𝑜𝑘𝑠/1000) 

 

where 𝑤 is the spatial random effect calculated based on the SPDE approach and 𝐴𝑅1 

represents autoregressive model. Thus, the model estimates multiple spatial random fields 



that are autoregressive by year. Unlike the iid model, 𝑓𝑙𝑒𝑒𝑡 and ℎ𝑝𝑏 were incorporated 

as random effect for technical reason, but the difference influence on neither the WAIC 

nor model selection. The other parts of the model are the same with iid model. 

 In addition to the full model described above, models combining different 

explanatory variables and error distribution of response variable were compared to search 

for the best model. Given the long computation time required to implement the spatio-

temporal model, the candidate explanatory variables to be excluded were fleet and hpb, 

and a negative binomial distribution was tested in addition to the zero-inflated negative 

binomial distribution as the error distribution of the response variable. 

 

Results and Discussion 

Model selection 

The performances of iid and SPDE models were compared based on WAIC and 

LOOCV of full models. The WAIC and LOOCV for iid model were 1771956.0 and 

1436367.0, respectively, whereas that of SPDE model were 642479.4 and 642346.4, 

respectively. Thus, the SPDE model showed better performance than iid model, and the 

improvement of WAIC was no less than 63.6%. Results of comparison of the SPDE 

models assuming different error distributions for the response variable and combinations 

of explanatory variables, zero-inflated negative binomial distribution incorporating all 

explanatory variables had the lowest WAIC, although differences in WAIC among SPDE 

models were very low (Table 1). Thus, we concluded that SPDE model with zero-inflated 

negative binomial distribution including all explanatory variables was the best model to 

estimate standardized CPUE for adult north Pacific albacore. 

 

Validation of the best model 

Plot of Matérn correlation function, which defines the correlation between locations, 

versus distance suggested that we have strong spatial correlation up to about 300km, and 

the distance over which the correlation between points decreases to 10% was 

approximately 880 km (Fig. 3). Therefore, the max.edge value we set for the 

triangularization was within the range of distances where the correlations between sites 

were sufficiently high. 

Plot of randomized quantile residuals suggested that the residuals generally followed 

a normal distribution (Fig. 4), but for the points where the residuals were less than -2, 

there may still be some systematic error as clearly did not follow a normal distribution. 

Negative residuals indicate that actual catches were lower than expected. To investigate 

the causes of these systematic errors, we checked the relationships between randomized 



quantile residuals and year, location, hpb, and fleet, but no clear differences along with 

these variables were found. The only residual plot by fishing vessel ID showed residuals 

that clearly deviated from the normal distribution for certain vessels. Even for the same 

fishing vessel, the residuals sometimes follow a normal distribution and sometimes do 

not, and it is difficult to identify the cause of these systematic errors. However, such 

vessels may not have achieved the expected catches due to lack of technology or targeting 

species other than albacore. In future stock assessments, more accurate standardized 

CPUE could be achieved by introducing a process to extract and exclude such problematic 

data. No other problems were found with the latent random field and the posterior 

distribution of parameters of the best model (Fig. 5, 6). 

 

Estimation of standardized CPUE 

The trends in annual changes in standardized CPUE estimated based on the best 

model were generally consistent with the trends in nominal CPUE, whereas standardized 

CPUE tended to be lower than the nominal CPUE after 2000 (Fig. 7). On the other hand, 

the standardized CPUE estimated by using the iid model (Fig. 8; Matsubayashi et al. 

2022) did not show such trend, and the standardized CPUE was always close to the 

nominal CPUE. Given the significant improvement in WAIC in the SPDE model, we 

recommend using the standardized CPUE estimated by INLA presented in this study as 

the input data for the stock assessment model. 
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Figure 1. Area definition of Japanese longline fishery for albacore. 

  



 

 

Figure 2. Triangularization of Japanese longline data and points are data locations. The 

color of each point indicates the number of hooks. 

  



 

Figure 3. Matern correlation function versus distance. The dashed line indicates the 

max.edge value we set for triangularization. 
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Figure 4. Plot of randomized quantile residuals versus fitted values.  



 

Figure 5. Interpolated spatial random field (annual mean values are shown). 

  



 

Figure 6. Posterior distributions of each parameter.  



 

 

Figure 7. Plot of annual trends in nominal and standardized CPUE estimated by using 

SPDE model in this study. The red ranges indicate the 5% and 95% quantile intervals of 

the estimated standardized CPUE. 

  



 

Figure 7. Plot of annual trends in nominal and standardized CPUE estimated by iid model 

in Matsubayashi et al. (2022). The red ranges indicate the 5% and 95% quantile intervals 

of the estimated standardized CPUE. 

  



Table 1. Results of model selection. Lowest values of Widely Applicable Information 

Criterion (WAIC) and Leave-One-Out Cross Validation (LOOCV) were highlighted in 

red. 

 

Model type Family Model structure (INLA function) WAIC LOOCV

iid  model
Zero-inflated

negative binomial

CPUE alb   ~ intercept + year + fleet + hpb  + f (vessel ID , model=iid )+

f (latlon , model=iid ) + offset(hooks /1000)
1771956 1436367

CPUE alb   ~ intercept + year + f (fleet , model=iid ) + f (hpb , model=iid ) +

f (vessel ID , model=iid )+ f (w , model=AR1 ) + offset(hooks /1000)
642479.4 642346.4

CPUE alb   ~ intercept + year + f (hpb , model=iid ) + f (vessel ID , model=iid )+

f (w , model=AR1 ) + offset(hooks /1000)
644031.8 643755.4

CPUE alb   ~ intercept + year + f (fleet , model=iid ) + f (vessel ID , model=iid )+

f (w , model=AR1 ) + offset(hooks /1000)
644328.7 644006.8

CPUE alb   ~ intercept + year + f (vessel ID , model=iid )+ f (w , model=AR1 ) +

offset(hooks /1000)
644229.1 644004.1

CPUE alb   ~ intercept + year + f (fleet , model=iid ) + f (hpb , model=iid ) +

f (vessel ID , model=iid )+ f (w , model=AR1 ) + offset(hooks /1000)
643790.8 643588.6

CPUE alb   ~ intercept + year + f (hpb , model=iid ) + f (vessel ID , model=iid )+

f (w , model=AR1 ) + offset(hooks /1000)
643801.8 643600.5

CPUE alb   ~ intercept + year + f (fleet , model=iid ) + f (vessel ID , model=iid )+

f (w , model=AR1 ) + offset(hooks /1000)
643934.1 643706.9

CPUE alb   ~ intercept + year + f (vessel ID , model=iid )+ f (w , model=AR1 ) +

offset(hooks /1000)
643954.2 643728.7

SPDE  model

Zero-inflated

negative binomial

Negative binomial


